

23.
$$f(x) = \begin{cases} x + 3 & -2 \le x < 1 \\ 5 & x = 1 \\ -x + 2 & x > 1 \end{cases}$$

- (a) Find the domain of each function.
- (c) Graph each function by hand.
- (e) Verify your results using a graphing utility.
- (b) Locate any intercepts.

We have memorized functions

We can use this to graph more complex functions, if they are based on these.

$$f(x) = 4*(2x-5)^2 + 7$$

This can be graphed by starting with $f(x)=x^2$ and accounting for the effects of the 4,2,5, and 7

Targets:

We want to describe, with proper terminology, transformations expressed in a function.

We want to be able to create a table for a transformed function.

We want to create a graph by transforming a base function.

Tricky bits:

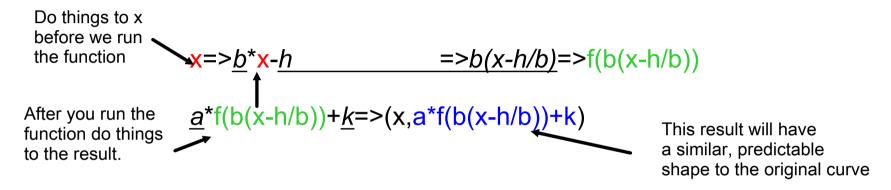
Order
Terminology

Mr. Benjamin rule:

If you have two manipulations of x, always get to the right form.

$$ax - h = a\left(x - \frac{h}{a}\right)$$
 $2x - 5 = 2\left(x - \frac{5}{2}\right)$

Which is the actual visible left right shift?

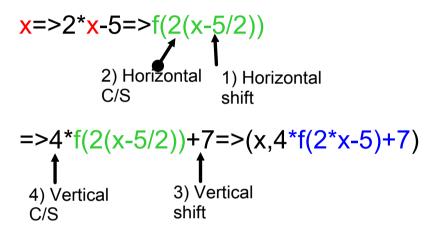

$$\frac{h}{a}$$

f(x) is some function of x

f(x) makes a certain curve:

$$x=>f(x)=>(x,f(x))$$

But we can mess with the process


Before changes are horizontal, after are vertical

f(x) is some function of x

f(x) makes a certain curve:

$$x=>f(x)=>(x,f(x))$$

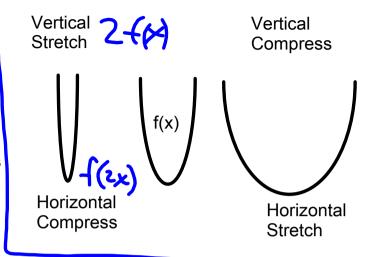
But we can mess with the process

Changes to x before you apply the function have a horizontal impact. They turn each x into a different x

Changes to after the function has been executed have vertical impact.

They turn an answer into a different answer

IF A GRAPH HAS <u>BOTH</u> HORIZONTAL TRANSFORMATIONS YOU HAVE TO TAKE CARE THE ORDER YOU DO MATTERS ON WHAT YOU ARE DOING



- - h: Shift right h
- **b:** x results from first step compress by 1/b
- o a: Multiply all the y's by a
- +k: Move all the y's up k

Terminology:

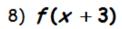
Making it taller is a vertical stretch Stretch for sky Making wider is vertical compress Compress down

Making it taller is a horizontal compress
Compress left to right
Making wider is horizontal stretch
Stretch wider

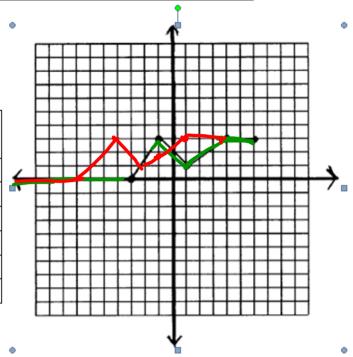
Horizontal C/S: bx

A large positive "b" makes a small x get the result that belongs to a big x. Moving the results in. Compressing horizontally.

A fractional "b" makes a large x get the result that belongs to a small x. Moving the results out. Stretching horizontally.


Vertical C/S:af(x)

A large positive "a" makes the answer bigger Stretching the results up. A fractional "a" makes the answers smaller


A fractional "a" makes the answers smaller Compressing the result down.

according to the given transformation. 7) f(x-2)Old Old New Y New Pt pt x-2 f(x-2) **f(x)** (x,y) (x,y) (-3,0) - 5 (-3,0) (-1, 0)(1,1) (4,3) (6, 3) (6,3)

9

	Old	Old		New Y	New
	У	pt			Pt
X	f(x)	(x,y)	x+3	f(x+3)	(x,y)
-3	0	(-3,0)	0	2	(-3, 2)
-1	3	(-1,3)	٦.	1.5	(-1,/.9
1	1	(1,1)	7	3	(1, 3)
4	3	(4,3)	4	MA	(4,-)
6	3	(6,3)	6	42	(6,)

Describe the transformation:

transformer4.ggb