2.4 Library of functions

The functions below are the "building blocks" for many other functions. Make a sketch of the graph of these basic functions. Keep these for reference in your "memory". They'll come in handy later...

1) The Constant Function: $\boldsymbol{y}=\boldsymbol{b}$

2) The Identity Function $\boldsymbol{y}=\boldsymbol{x}$

3) The Square Function: $y=x^{2}$

4) The Cube Function: $y=x^{3}$

5) The Square Root function: $y=\sqrt{x}$

6) The Cube Root Function: $y=\sqrt[3]{x}$

7) The Reciprocal Function: $y=\frac{1}{x} \quad$ 8) The Absolute Value Function: $y=|x|$

8) The Greatest Integer Function: $\mathrm{y}=\operatorname{int}(\mathrm{x})$ or $\mathrm{y}=\llbracket x \rrbracket$

Problems:

1) If $f(x)=\operatorname{int}(x)$, what is $f(1.4)$? $f(0.9)$? $f(-2.3)$?

1,0 ,-3
2) If $g(x)=\operatorname{int}\left(\frac{x}{2}\right)$, what is $g(2.6)$? $g(-3.4)$?
$1,-2$

Piecewise-Defined Functions

Sometimes a function is defined differently on different parts of its domain. For example, the absolute value function $f(x)=|x|$ is actually defined by two equations $f(x)=x$ if $x \geq 0$ and $f(x)=-x$ if $x<0$. For convenience we generally combine these equations into one expression such as:

$$
f(x)= \begin{cases}x & \text { if } \mathrm{x} \geq 0 \\ -x & \text { if } \mathrm{x}<0\end{cases}
$$

1) For $f(x)= \begin{cases}-x+1 & \text { if }-4 \leq x<1 \\ -3 & \text { if } \mathrm{x}=1 \\ x^{2} & \text { if } \mathrm{x}>1\end{cases}$
A) Graph f
B) Find $f(0)=1$
c) Find $f(1)=-3$

D) Find $f(2)=4$
E) Determine the domain and range Domain $=[-4,+\infty)\{x \mid-4<=x\}$

$$
\text { Range }=[-3] \cup(0,+\infty)\{y \mid y=-3, y>0\}
$$

2) For $f(x)=\left\{\begin{array}{lc}-\frac{4}{3} x & \text { if }-3<x \leq 0 \\ \sqrt{x} & \text { if } x>0\end{array}\right.$
A) Graph f
B) $f(-3)=$ Undefined
C) $f(0)=0$
D) $f(16)=4$

E) What is the domain and range in interval notation? Domain: $(-3,+\infty)\{x \mid-3<x<+\infty\}$ Range: $[0,+\infty)\{y \mid y>=0\}$
3) For $f(x)= \begin{cases}x^{2}+2, & x<-1 \\ 5, & -1 \leq x \leq 2 \\ \frac{1}{x}, & x>2\end{cases}$
a) Graph
b) $f(0)=5$
c) $f(-3)=11$

d) $f(5)=.2$
e) For what value of x is $f(x)=3$? $f(x)=0.25$?
$F(x)=3$, no solution. $f(x)=.25$ when $x=4$
f) Domain is __All reals___ Range is: __ $(0, .5) \cup(3,+\infty)$
4) Find a piecewise function to define $f(x)=|x-3|$ without using absolute value.

$$
F(x)=\left\{\begin{array}{cc}
-x+3 & -\infty<x<3 \\
x-3 & 3<=x<\infty
\end{array}\right.
$$

A) Graph f
B) $f(0)=3$
C) $f(-200)=203$
D) What is the domain and range in interval notation?
Range: $[0,+\infty$)

Domain: All reals
5) A piecewise function is given in the graph below. Assume that all pieces are members of the library of functions.
a) Define f.
b) Give its domain and range.
$F(x)=$
$\begin{cases}X^{3} & -2<=x<2 \\ 9 & 2<=x<=8\end{cases}$

