2.5 TRANSFORMATIONS ON GRAPHS

Types of transformations:

- (1) Translations - a "slide"
- (2) Reflections - a "flip" about a line
- (3) Rotations - a "turn" about a point
- (4) Dilations - compressions or stretches

The first 3 transformations do not affect the "shape" of a graph.

Before we start, try these:
For all the transformation below $f(x)=x^{2}$. Put $f(x)=x^{2}$ in Y1 of your calculator and each transformation on $Y 2$. Compare the graphs and describe each transformation.

1) $f(x)+5$ ___ Vertical translation/slide up
2) $f(x-3) \quad$ _Horizontal translation/slide up
3) $f(-x)$
___Reflection/flip over y-axis \qquad
4) $-f(x)$ \qquad Reflection/flip over x-axis \qquad
5) $3 \cdot f(x)$
___ Vertical stretch \qquad
6) $f(2 x)$
___Horizontal compression \qquad

FOR PROBLEMS 7-12
When executing a transformation you may be manipulating x before you execute the function, manipulating the result you get from the function, or manipulating both.

When the transformation manipulates x, as in $f(x+2)$, the point you plot is created as follows:

- The x you plot is the x you start with.
- The y you plot is the y you get when you evaluate the function for the MANIPULATED X.

For $f(x)=3 x+11, f(7)=32$. Plotted as $(7,32)$
Given this $f(x), \underline{f(x+2)}$ evaluated at $x=7$ would be plotted as follows:

$$
\begin{equation*}
(1, f(x+2)) \text { or }(1,3(7+2)+11) \text { or } \tag{1,38}
\end{equation*}
$$

When the transformation manipulates $f(x)$, as in $5^{*} f(x)$, the point you plot is created as follow:

- The x you plot is the x you start with.
- The y you plot is the result you get when you evaluate the function for the starting x and then manipulate the functions result.

For $f(x)=3 x+11, f(7)=32$. Plotted as $(7,32)$

Given this $f(x), 5^{\star} f(x)$ evaluated at $x=7$ would be plotted as follows:
$\left(1,5^{\star} f(x)\right)$ or $\left(1,5^{\star}(3(7)+11)\right)$ or $(1,160)$

Complete the table to help you redraw each of the graphs befow according to the given transformation.
7) $f(x-2)$

Describe the transformation: __horizontal translation right 2_
8) $f(x+3)$

Describe the transformation: \qquad horizontal translation left 3__

Complete the table to help you redraw each of the graphs below according to the given transformation.
9) $f(-x)$

	Old y	Old pt		New Y	New Pt
x	$f(x)$	(x, y)	$-x$	$f(-x)$	(x, y)
-3	0	$(-3,0)$	3	2.1	$(-3,2.1)$
-1	3	$(-1,3)$	1	1	$(-1,1)$
1	1	$(1,1)$	-1	3	$(1,3)$
4	3	$(4,3)$	-4	0	$(4,0)$
6	3	$(6,3)$	-6	0	$(6,0)$

Transformation: \qquad Rotate over the y-axis \qquad
10) $-f(x)$

	Old y	Old pt	New Y	New Pt
X	$f(x)$	(x, y)	$-f(x)$	(x, y)
-3	0	$(-3,0)$	0	$(-3,0)$
-1	3	$(-1,3)$	-3	$(-1,-3)$
1	1	$(1,1)$	-1	$(1,-1)$
4	3	$(4,3)$	-3	$(4,-3)$
6	3	$(6,3)$	-3	$(6,-3)$

Transformation: \qquad rotate over the x-axis \qquad

$$
\text { 11) } 2 \cdot f(x)
$$

	Old y	Old pt	New Y	New Pt
X	$f(x)$	(x, y)	$2 f(x)$	(x, y)
-3	0	$(-3,0)$	0	$(-3,0)$
-1	3	$(-1,3)$	6	$(-1,6)$
1	1	$(1,1)$	2	$(1,2)$
4	3	$(4,3)$	6	$(4,6)$
6	3	$(6,3)$	6	$(6,6)$

Transformation: \qquad Vertical stretch \qquad
12) $f(2 x)$

Transformation: \qquad Horiontal compression \qquad

