FUNDAMENTAL THEORY OF ALGEBRA

Every $\underline{\text{complex}}$ polynomial P(x)

of degree n>=1 has exactly **n** zeros

(provided a zero of multiplicity **m** is counted as **m** zeros),

and can be factored into **n** linear factors of the form

CONJUGATE PAIRS THEOREM 1)

If P(x) is a polynomial with <u>real</u> coefficients, and a+bi is an imaginary root of the equation P(x) = 0, a-bi then is also a root.

CONJUGATE PAIRS THEOREM Variations For Example:

If P(x) is a polynomial with <u>real</u> coefficients, and $a+b(c)^{2}$ is a root of the equation P(x) = 0, $a-b(c)^{2}$ then is also a root.

x²-2ax+(a²+b²) is a factor (this is an irreducible quadratic)

$$3-4i=>$$
 $3+4i$

$$(x-(3-4i))(x-(3+4i))$$

$$= x^2-6x+25$$

*As long as b<>0

$$(x - (a-bi))(x - (a+bi))=$$

 $x^2-2ax+(a^2+b^2)$

2-4i is a root.

Then the polynomial is divisible by $x^2-4x+20$

The next two pages are titled either:

"Some Neat Relationships with Quadratic Forms" or "Mr. Benjamin Needs to Get a Life"

(bi))=
$$(x - (2-3i))(x - (2+3i))=$$

 $-2*2/\sqrt{2^2+3^2}$
 $x^2-4x+13=$
 $(x - (2-3i))(x - (2+3i))=$
 $(x-2)^2+9$
 $(x-2)^2+9$

$$(x-b)^{2} + n = (x+2)^{2} - 9 = (x+2)^{2} -$$

You are responsible for the theorems in the following way:
- You must be able to apply them
- You must be able to name which one your using

 $x^4-7x^3+14x^2-38x-60$. One root is 1+3i

Then 1-3i is a root and $x^2-2x+10$ is a factor

$$\frac{-6x^{2} + 10x - 60}{x^{3} + 10x^{3} + 10x^{3}}$$

$$\frac{-6x^{2} + 10x - 60}{x^{4} - 5x^{3} + 10x^{3}}$$

$$\frac{-6x^{2} + 10x - 60}{x^{4} - 5x^{3} + 10x^{4}}$$

$$\frac{-6x^{2} + 10x - 60}{x^{4} - 5x^{3} + 10x^{4}}$$

Degree 4: Known zeros of 4+i and -i

Remaining zeros?

Form the polynomial (in expanded form)

Degree 6: Known zeros: i, 4-i, 2+i

$$(x^{2}+1)(x^{2}-8x+17)(x^{2}-4x+5)=$$

$$(x^{2}+1)(x^{4}-4x^{3}+5x^{2}-8x^{3}+32x^{2}-40x+17x^{2}-68x+85)=$$

$$(x^{2}+1)(x^{4}-12x^{3}+54x^{2}-108x+85)=$$

$$x^{6}-12x^{5}+54x^{4}-108x^{3}+85x^{2}+x^{4}-12x^{3}+54x^{2}-108x+85=$$

$$x^{6}-12x^{5}+55x^{4}-120x^{3}+139x^{2}-108x+85$$

$$f(x) = 2x^4 + x^3 - 35x^2 - 113x + 65$$

$$(x-5)(x-1/2)(2x^2+12x+26)=$$

$$(x-5)(2x-1)(x^2+6x+13)=$$

$$(x-5)(2x-1)(x-(-3+2i))(x-(-3-2i))$$

$$f(x) = 2x^3 + 11x^2 + 20x - 13$$