Objectives:

- Learn proper terminology for elements of polynomial division
- Learn a theorem that gives a new way to calculate f(#)

When we divide, life is easy if the divisor goes into the dividend nicely. But remainders happen.

Lets look at division a relationship of $\underline{4}$ quantities.

Different ways to express the same relationship:

Dividend Divisor
$$\frac{13}{3} = \frac{4*3+1}{3} = 4 + \frac{1}{3}$$
 Remainder Quotient or $\frac{13}{3} = 4 + \frac{1}{3}$ OR Quotient $\frac{13}{3} = 4 + \frac{1}{3}$ OR Represent dividing 21 and 4 in this way

When we divide, life is easy if the divisor goes into the dividend nicely. But remainders happen.

Lets look at division a relationship of $\underline{4}$ quantities.

If we were as familiar with polynomials as we are integers, we could see rational functions in this way:

$$\frac{3x^2 - 8x}{x - 2} = \frac{3x^2 - 6x - 2x}{x - 2} = \frac{3x(x - 2) - 2x}{x - 2} = 3x - \frac{2x}{x - 2}$$

$$\frac{3x^2 - 8x}{x - 2} = 3x - \frac{2x}{x - 2}$$
OR (rewrite this one)

$$\frac{f(x)}{g(x)} = q(x) + \frac{r(x)}{g(x)} \quad \text{or} \quad f(x) = q(x)g(x) + r(x)$$

$$\uparrow \quad \uparrow \quad \uparrow$$

$$\uparrow \quad \uparrow$$

$$dividend \quad quotient \quad divisor \quad remainder$$

$$\frac{3x^2 - 8x}{x - 2} = 3x - \frac{2x}{x - 2}$$

$$3x^2 - 8x = 3x(x - 2) - 2x$$

What is the remainder?

Division Algorithm for Polynomials

If f(x) and g(x) denote polynomial functions and if g(x) is not the zero polynomial, then there are unique polynomial functions q(x) and r(x) such that

$$\frac{f(x)}{g(x)} = q(x) + \frac{r(x)}{g(x)} \quad \text{or} \quad f(x) = q(x)g(x) + r(x) \quad (1)$$

$$\uparrow \quad \uparrow \quad \uparrow \quad \uparrow$$

$$\downarrow \text{dividend quotient divisor remainder}$$

where r(x) is either the zero polynomial or a polynomial of degree less than that of g(x).

$$\frac{f(x)}{g(x)} = q(x) + \frac{r(x)}{g(x)} \quad \text{or} \quad f(x) = q(x)g(x) + r(x)$$

$$\uparrow \quad \uparrow \quad \uparrow$$

$$\uparrow \quad \uparrow$$

$$dividend \quad quotient \quad divisor \quad remainder$$

If
$$f(x)=4x^2-12x$$

$$\frac{4x^2-12x}{x-3}=\frac{4x(x-3)}{x-3}=4x$$
 What is f(3)?

$$4x^2 - 12x = 4x(x-3)$$

So, if c is a zero of f(x), then f(c) = 0. Well, yeah. If c is a zero, then (x-c) is a factor of f(x). Well, yeah. If c is a zero, then dividing by (x-c) has no remainder.

What if c is not a zero?

New Problem:

If
$$f(x)=4x^2-12x+4$$

What is f(3)?

$$\frac{4x^2 - 12x + 4}{x - 3} = 4x + \frac{4}{x - 3}$$

$$4x^2 - 12x + 4 = 4x(x-3) + 4$$

What??????

If I ask you, "What is f(#)?", then one way to find out is to:

- Divide by (x-#)
- Take the remainder

If
$$f(x)=4x^2-12x+4$$

$$\begin{array}{r}
4x+8 \\
x-5{\overline{\smash)}}4x^2-12x+4 \\
4x^2-20x
\end{array}$$

Divide and discover:

$$f(x) = 4x^2 - 12x + 4 = (4x + 8)(x - 5) + 44$$

$$8x - 40$$

8x + 4

So, when we plug 5 in on the right:

$$f(x) = 4(5)^2 - 12(5) + 4 = (28)(0) + 44$$

We can either plug 5 in or divide to get the answer

If I ask you, "What is f(#)?", then one way to find out is to:

- Divide by (x-#)
- Take the remainder

What is f(2) for
$$3x^2-8x$$
?
$$\frac{3x-2}{3x^2-8x}$$

$$-2x$$

$$-2x+4$$

$$-4$$

$$3x^2-6x = (3x-2)x-7$$

Why?

There is a function:

$$(3x-2)(x-2)$$

For which 2 is a zero.

By how much does our original function miss this functions by?

The remainder.

Put another way, what is the difference between this function and the original function? => The remainder

Objective

- Learn rules to help find zeros
- Gain skill at using rules and synthetic division to quickly find zeros.

$$F(X) = 2X^{3} - 2X^{2} - 82X + 210 = (x - 3)(2x^{2} - 82X + 210) = (x - 3)(2x^{2} - 82X + 210)$$
5? => (x-5) => to synthetic division

f(x)=2(x-5)(x-3)(x+7)

A) A biconditional:

- 1) If f(c)=0, then x-c is a factor of f(x)
- 2) If x-c is a factor of f(x) then f(c) = 0

Use: If you find a zero, can be divided out to create a simpler polynomial for further study.

- B) The degree of the polynomials tells you the maximum number of real zeros. Use: You know when to stop.
- C) IF A POLYNOMIAL FUNCTION HAS INTEGER COEFFICENTS then make two lists:
 - 1) factor the constant (call these p's)
 - 2) factor the leading coefficient (call these q's)
 - 3) make all the +/- fractions you can putting the p's/q's

ALL YOU REAL RATIONAL ZEROS ARE IN THIS LIST.

Use: It gives you all the possibilities.

- A useful list
- A guide on window size
- D) IF THE LEADING COEFFICIENT OF A POLYNOMIAL IS 1

then all the zeros are between

-M to +M where M is

The smaller of

o The sum of the absolute value of the coefficients and

o 1 + the coefficient with the biggest absolute value Use: You know how big a window to set on the calculator.

- E) End behavior and turning points are still useful.
- F) Intermediate value theorem to find irrationals.

$$f(x) = 2x^4 + 2x^3 - 14x^2 - 2x + 12$$

factors of 12 {1,2,3,4,6,12} factors of 2 {1,2}

p/q's =>
$$\{\pm 12, \pm 6, \pm 4, \pm 3, \pm \frac{3}{2}, \pm 2, \pm 1, \pm \frac{1}{2}\}$$

Everything is even, I like 2.

 $2x^3+6x^2-2x-6$

I like 3 or (x-3)

2 12... I don't like 3.

Try again.....

$$2x^3+6x^2-2x-6$$

I like -3 or (x+3)

$$2x^2-2=2(x^2-1)=2(x+1)(x-1)$$

$$f(x)=2(x-2)(x+3)(x+1)(x-1)$$

$$F(X) = 2X^3 - 2X^2 - 82X + 210$$
 factors of 210=>{1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210} factors of 2=>{1, 2}

{+/-1, +/-2, +/-3, +/-5, +/-6, +/-7, +/-10, +/-14, +/-15, +/-21, +/-30, +/-35, +/-42, +/-70, +/-105, +/-210, +/-1/2, +/-3/2, +/-5/2, +/-7/2, +/-15/2, +/-21/2, +/-35/2, +/-105/2}}

 $5? \Rightarrow (x-5) \Rightarrow \text{ to synthetic division}$

 $2x^2+8x-42$

Find the k such that x^4 - kx^3 + kx^2 +1 has a factor of x+2

$$x^{3} + \frac{-7}{12}x^{2} + \frac{-3}{12}x + \frac{6}{12}$$

$$x^{3} + \frac{-7}{12}x^{2} + \frac{-3}{12}x + \frac{6}{12}$$

$$x + 2 = \frac{x^{3} + \frac{-7}{12}x^{2} + \frac{-3}{12}x + \frac{6}{12}}{x^{2} + \frac{-3}{12}x^{2} + 1}$$

$$x + 2 = \frac{x^{3} + \frac{-7}{12}x^{2} - \frac{17}{12}x^{2} + 1}{x^{2} + \frac{-14}{12}x^{2}}$$

$$\frac{-7}{12}x^{3} + \frac{-14}{12}x^{2}$$

$$\frac{-3}{12}x^{2} + \frac{-6}{12}x$$

$$\frac$$

What are the zeros of:

x²+1?

 $x^2+2x+20$?

 $x^3+3x^2+4x+12$?