3.8 Complex Zeros end The Fundamental rheorem of Algebre

DEFINITION: A complex polynomial function is one whose coefficients are complex numbers.

Recall that the set of Real numbers are a subset of the set of Complex numbers. For this reason, both polynomials below are examples of complex polynomials.
(1) $f(x)=2 x^{3}-\sqrt{7} x^{2}+(2 i) x-3$ and
(2) $g(x)=2 x^{3}-3 x^{2}+1$

Recall that some polynomials may have roots that are real, complex, or both. Let's see...
(3) Find all of the zeros of $f(x)=x^{3}-x^{2}+9 x-9$.
$1,-3 i, 3 i$
(4) Rewrite the cubic polynomial above as a product of linear factors of the form $f(x)=a\left(x-z_{1}\right)\left(x-z_{2}\right)\left(x-z_{3}\right)$ where \boldsymbol{z}_{i} are complex zeros.

$$
\ldots(x-1)(x+3 i)(x-3 i)
$$

The above prepares you to understand the most important theorem of algebra:

THE FUNDAMENTAL THEOREM OF ALGEBRA

Every complex polynomial $P(x)$ of degree $n \geq 1$ has exactly n zeros (provided a zero of multiplicity \boldsymbol{m} is counted as m zeros), and can be factored into n linear factors of the form

$$
p(x)=a\left(x-z_{1}\right)\left(x-z_{2}\right)\left(x-z_{3}\right) \ldots\left(x-z_{n}\right)
$$

(5) How many roots must the equation $x^{4}+3 x^{2}-\mathbf{4}=\mathbf{0}$ have? Express the polynomial as a product of linear factors.

4, $(x-1)(x+1)(x-2 i)(x+2 i)$

As you noticed, some of the roots of a polynomial come in pairs, as the next theorem indicate.

CONJUGATE PAIRS THEOREM(*) - If $P(x)$ is a polynomial with real coefficients, and $\boldsymbol{a}+\boldsymbol{b i}$ is an imaginary root of the equation $P(x)=0$, then $\boldsymbol{a}-\boldsymbol{b i}$ is also a root.
${ }^{(*)}$) same is true for irrational zeros if $p(x)$ is a polynomial with rational coefficents ... if $a+\sqrt{b}$ is a zero, then $a-\sqrt{b}$ is also a zero.
6) A cubic equation with real coefficients has roots -2 and $3+5 i$. What is the third root? 3-5i
7) Can a cubic polynomial have 3 zeros that are imaginary numbers? Explain. __No, for the $3^{\text {rd }}$ root to be imaginary its conjugate would have to be a root, but that would make a fourth root. \qquad
Your conclusion in \#7 prepares you to understand this last theorem:
THEOREM: A polynomial of odd degree with real coefficients has at least one real zero.
8) A quartic equation with real coefficients has roots $2 i$ and $3 i$. Find the other 2 roots and write the equation as a product of 2 quadratic factors.

$$
-2 i,-3 i,\left(x^{2}+4\right)\left(x^{2}+9\right)
$$

\qquad

OBTAINING A QUADRATIC EQUATION FROM ITS ROOTS

A quadratic equation that has as roots the numbers \boldsymbol{z}_{1} and \boldsymbol{z}_{2}, may be obtained by using the formula:
$x^{2}-($ sum of the roots $) x+($ product of the roots $)=0$
9) Find a quadratic equation with roots $\mathbf{3} \pm \mathbf{2 i}$.
$x^{2}-6 x+13=0$
10) Find a cubic polynomial that has zeros $\mathbf{- 5}$ and $2+7 i$.
$(x+5)\left(x^{2}-4 x+53\right)=x^{3}-4 x^{2}+53 x+5 x^{2}-20 x+265=x^{3}+x^{2}+33 x+265$
10) Find a polynomial f of degree 5 and real coefficients that has zeros: $3,-5 i$, and $-2+4 i$.

$$
(x-3)\left(x^{2}+25\right)\left(x^{2}+4 x+20\right)=x^{5}+x^{4}+33 x^{3}-35 x^{2}+200 x-1500
$$

$$
f(x)=
$$

