### 4.2 EXPONENTIAL FUNCTIONS

Definition: An exponential function is a function of the form

$$
f(x)=a^{x}, \text { where } a>0 \text { and } a \neq 1
$$

Where the domain of $f$ is the set of all real numbers.

1) Why must $a$ be positive? $\qquad$ when $a<0, a^{x}$ is not defined for all $x$. $\qquad$
2) Why must $a \neq 1$ ? $\qquad$ This is simply $y=1$ $\qquad$
3) Graph the functions: $\boldsymbol{y}=2^{x}, y=3^{x}, y=\left(\frac{3}{2}\right)^{x}$. These graphs share some common characteristics. Let's see...
a) What are the $X$ - and $Y$-intercepts? No $x$-intercept, $y$-intercept $=(0,1)$
b) What is the range of $f$ ? __\{yly>0\} $\qquad$
c) Describe $f$ as an increasing or decreasing function. _Increasing
d) Is $f$ one-to-one or many-to-one? _one-to-one $\qquad$
e) Describe the behavior of $f$ as $x \rightarrow \infty$ and as $\boldsymbol{x} \rightarrow-\infty$ :

As $x$ increases infinitely the functions become infinitely large.
As $x$ decreases infinitely the functions become approach 0 from the positive side.
f) Identify any horizontal asymptotes: $\quad \mathbf{y}=\mathbf{0}$
g) Are there any vertical asymptotes? _No
h) Discuss "smoothness" and "continuity" of the graph of $f$. $\qquad$
___It is smooth and continuous. $\qquad$
4) Graph the functions $y=\left(\frac{1}{2}\right)^{x}, y=\left(\frac{1}{3}\right)^{x}$, and $y=\left(\frac{2}{3}\right)^{x}$.

Observe that the bases of each of these functions are the reciprocals of the functions in \#3.
a) Describe the behavior of $f$ as $\boldsymbol{x} \rightarrow \infty$ and as $\boldsymbol{x} \rightarrow-\infty$ : As $x$ decreases infinitely the functions become infinitely large. As $x$ increases infinitely the functions become approach 0 from the positive side.
b) Identify a point common to the graphs of all three: _( 0,1 )
c) What is the horizontal asymptote?
$\ldots y=0$ $\qquad$
d) Identify the graphs as increasing/decreasing and exponential growth/decay. _The first set are growth. The second set is decay.
e) What can you say when you compare the graphs of $y=3^{x}$ and $y=\left(\frac{1}{3}\right)^{x}$ ? __They are the same graph flipped over the $y$ axis. $\qquad$
Now let's see if you are ready to generalize some key concepts...
5) The graph of every exponential function $f(x)=a^{x}, a>0$, passes through three points: ___(-1,1/a)__(0,1)_, and __(1,a)_.
6) The graphs of $f(x)=a^{-x}$ and $f(x)=\left(\frac{1}{a}\right)^{x}$ are identical. Why? _Yes, because $a^{-x}=\left(a^{-1}\right)^{x}=(1 / a)^{x}$
7) If the graph of an exponential function $f(x)=\boldsymbol{a}^{x}$ is decreasing, then $\boldsymbol{a}$ must be _0<a<1 $\qquad$ .
8) If the graph of $\boldsymbol{y}=\boldsymbol{k} \cdot \boldsymbol{a}^{\boldsymbol{x}}$ has $y$-intercept 5 , what is the value of $k$ ? $K=5$
9) If $f(x)=2^{x}$, show that $f(x+1)=2 \cdot f(x) 2^{x+1}=2^{x} 2^{1}=2^{\star} 2^{x}$

TRUE/FALSE:
10) The graph of an exponential function $f(x)=a^{x}, a<0$ is increasing.

False, $f(x)$ for negative numbers is often undefined and not increasing.
11) The range of every exponential function $f(x)=a^{x}, a>0$, is all real numbers.
False, only the positive numbers.
12) Every exponential function of the form $\boldsymbol{y}=\boldsymbol{a}^{x}$ is one-to-one and, therefore, has an inverse.
False, not true for $a=1$

## EXPONENTIAL FUNCTIONS AND TRANSFORMATIONS

5) Complete the table below using the graph of the function $f(x)=2^{x}$ as your reference. Make a sketch and describe the transformation.

|  | Sketch | Describe transformation |
| :--- | :--- | :--- |
| $f(x)=2^{x}$ |  | none |
| $f(-x)=\ldots$ <br> $2^{-x}$ or $(1 / 2)^{x}$ |  | Flipped over the $y$ - <br> axis |
| $f(x)+1=\ldots$ |  | Up 1 |
| $f(x-1)=$ |  | Shifted right one |
| $3 \cdot f(x)=\ldots$ |  |  |

6) Describe the transformations that have taken place on the graph of $\boldsymbol{y}=2 \cdot 3^{x-1}+4$ as compared to the graph of $\boldsymbol{y}=3^{x}$.
Right 1, Up 4, Steeper

## OPTIONAL: THE NUMBER $e \approx 2.71828182845904523536 . .$.

The number $e$ is sometimes called Euler's number after the Swiss mathematician Leonhard Euler. The number $e$ is one of the most important numbers in mathematics. Let's see why...
11) Interest payments are calculated based on nominal annual rate and the number of payments a year. Interest payments for a nominal annual rate of $8 \%$ paid annually are $8 \%$. Interest payments for a nominal annual rate of $8 \%$ paid semi-annually are $4 \%$ each. When you are paid more than once a year interest is compounded. Suppose you deposit $\$ 1000$ in an investment account that pays you an $8 \%$ nominal annual rate. Write a function to give you the amount of money in the account according to the following scenarios:

## Amount after 1 year

a) Compounding once a year.

$$
f(x)=\$ 1000^{\star}(1+.08)^{x}
$$

b) Compounding monthly.

$$
f(x)=\$ 1000 \star(1+.08 / 12)^{12 x}
$$

c) Compounding daily.

$$
f(x)=\$ 1000^{\star}(1+.08 / 365)^{365 x}
$$

d) Compounding every second...

$$
f(x)=\$ 1000^{\star}(1+.08 / 3.15569 e 7)^{3.15569 e 7 x}
$$

When the number of times the amount is compounded approaches infinity ( $\boldsymbol{n} \rightarrow \infty$ ), this is referred to as continuous compounding.

When the compounding is done continuously, the growth factor is closely related to the number $e$ as follows:
12) Evaluate the expression $\left(1+\frac{1}{n}\right)^{n}$ for many different "very large" values of $n$. What do you get? Increasingly closer to $e$
13) In advanced mathematics, the above could be simply expressed by using the shorthand notation

$$
\lim _{x \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=
$$

14) Now try figuring out what this expression will give you:

$$
\lim _{x \rightarrow \infty}\left(1+\frac{.05}{n}\right)^{n}=e^{.05}
$$

15) Does it make sense to replace the growth factor above by a number with base e?????????? (rhetorical question!)

Now let's try some problems dealing with Euler's number...
16) You invest $\$ 10,000$ in an account that pays you an annual rate of $7.5 \%$ compounded continuously.
a) Set up a model to represent the growth of your investment over time (measured in years).
$I(x)=\$ 10,000 e^{.075 t}$
b) How much money will you have in the account after 3 years? \$12,523.23
c) When will your account be worth $\$ 15,000$ ?

## 5.4 years

17) Spreading of Rumors...

A model for the number of people $N$ in a college community who have heard a certain rumor is

$$
N=P\left(1-e^{-.15 d}\right)
$$

Where $P$ is the total population, $d$ is the number of days since the rumor began. In a community of 1000 students, how many will have heard the rumor after 3 days?
362

