1)
$$\log_2 16 = 4 _2^4 = 16____$$
 2) $\log_3 9 = 2$

2)
$$\log_3 9 = 2$$

$$\frac{3^{2}=9}{3} \log_{4}\left(\frac{1}{16}\right) = -2 \quad 4^{-2}=1/16 \qquad 4)* \log 100 = 2 \quad 10^{2}=100$$

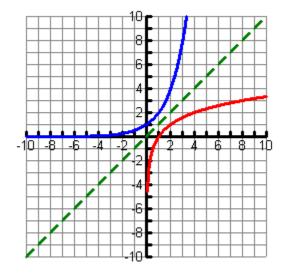
4)*
$$\log 100 = 2_{10^2=100_{10}}$$

6)
$$\ln e = 1$$

7)
$$\mathbf{3}^5 = \mathbf{243} \quad \log_{3}243=5$$
 8) $\mathbf{2}^7 = \mathbf{128} \log_{2}128=7$

8)
$$2^7 = 128_{\log_2 128 = 7}$$

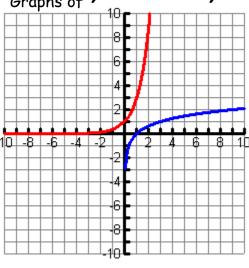
8)
$$10^5 = 100,000 |_{0g100,000=5}$$
 9) $e^{.69315} = 2 |_{1n2=.69315}$


9)
$$e^{.69315} = 2_{\ln 2 = .69315}$$

$$\log_4\left(\frac{1}{64}\right) =$$

$$_{14}$$
) $\log_2 2^3 = _3$

$$_{16)} \ln e^4 = 4$$


• The general shape of the graphs of the exponential and logarithmic functions:

The diagram shows how the graphs of $\mathbf{y} = \mathbf{2}^{\mathbf{x}}$ and $\mathbf{y} = \mathbf{log}_2 \ \mathbf{x}_{are}$ reflections of each other about the dashed line $oldsymbol{y}=oldsymbol{x}$.

21) How do the graphs above relate? The red lines are reflected over the y axis. The blue lines are reflected over the x-axis. The left graphs are for a>1. The right are for 0<a<1.

Graphs of $y = a^x$ and $y = \log_a x$.

When a > 1

When 0 < a < 1

22) Discuss the domain and range of the exponential and logarithmic functions.

Function	Domain	Range
$y = a^x$	All reals	All reals greater than 0
$y = \log_a x$	All reals greater than 0	All reals

- 23) What is the x-intercept of the graph of $y = \log_a x$? (1,0) Y-intercept? None
- 24) Horizontal Asymptotes? Vertical Asymptotes? None, x=0
- 25) When is the graph increasing? When a>1 Decreasing? 0<a<1
- 26) Name 3 points on the graph of $f(x) = \log_a x_{.(1,0),(a,1),(1/a,-1)}$ Find the domain of each function:

27)
$$f(x) = \log_2(2x + 3)$$
 2x+3>0=>x>-3/2

28)
$$g(x) = \log\left(\frac{1}{x-2}\right)$$
 $\frac{1}{x-2} > 0 => x-2 > 0 => x > 2$

TRANSFORMATIONS ON THE GRAPH OF LOGARITHMIC FUNCTIONS

29) Complete the table below using the graph of the function $f(x) = \ln x$ as your reference. Make a sketch and describe the transformation.

	Sketch	Describe transformation
$f(x) = \ln x$	1- 1- 1- 1- 1- 2- 3-	none
f(-x) = or ln(-x) or -ln(-1/x)	1- 1- 1- 1- 1- 1- 1- 2- 2- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3-	Flipped over the y axis
f(x) + 1 =	1- 1- 1- 1- 1- 1- 1- 2- 3-	Shifted up 1
f(x - 1) =	3- 2- 1123-	Shifted right 1
2 · f(x) =	4- 3- 2- 1- 1- 2-1 0 1 2 3 4	Vertically stretched

30) Describe the transformations that have taken place on the graph of $y = \ln(x + 1) + 2$ as compared to the graph of $y = \ln x$. Shifted left one and up 2

SOLVING A LOGARITHMIC EQUATION

31) Solve
$$\log_4(3x - 5) = 2$$

16=3x-5=>x=7

32)
$$\log_x 125 = 3$$
 $x^3 = 125 \Rightarrow x = 5$

33)
$$\log_x \left(\frac{1}{8}\right) = 3$$
 $x^3 = \frac{1}{8} = \frac{1}{2}^3 = x = \frac{1}{2}$

34)
$$\log_3 243 = 2x + 1$$
 $3^{2x+1} = 3^5 = x = 2$

$$3^{2x+1} = 3^5 = x = 2$$

35)
$$e^{2x+5} = 8$$

36)
$$e^{-2x+1} = 13$$

37)
$$\log_5(x^2 + x + 4) = 2$$

25=
$$x^2+x+4=>0=x^2+x-21=>x=\frac{1\pm\sqrt{85}}{2}$$

38) What is
$$\log_4 \sqrt[4]{4}$$
? $4^x = 4^{1/4}$ x=1/4

$$4^x = 4^{1/4}$$
 x=1/4