4.4 PROPERTIES OF LOGARITHMS

By Mrs. Trebat
The laws of logarithms are Closely related to the laws of exponents because the logarithmic function $\boldsymbol{y}=\log _{a} x$ and the exponential function $\boldsymbol{y}=\boldsymbol{a}^{\boldsymbol{x}}$ are inverses. Let's see...

Laws of Logarithms
Suppose that $\log _{a} \boldsymbol{M}=\boldsymbol{x}$ and $\log _{a} \boldsymbol{N}=\boldsymbol{y}$. Verify each of these laws and give an example to illustrate ($\boldsymbol{M}, \mathbf{N}, \boldsymbol{a}>0, a \neq 1$)

1) $\log _{a} M \cdot \mathbf{N}=\log _{a} M+\log _{a} N$ (The log of a product = product of logs)

$$
\begin{gathered}
\log _{2} 32=\log _{2} 4+\log _{2} 8 \\
5=2+3
\end{gathered}
$$

2) $\log _{a} \frac{M}{N}=\log _{a} M-\log _{a} N($ log of a quotient $=$ difference of logs)

$$
\log _{3} \frac{27}{9}=\log _{3} 27-\log _{3} 9
$$

3) $\log _{a} M^{k}=k \cdot \log _{a} M$, for any real number k.

$$
\begin{gathered}
\log _{4} 2^{6}=6 \log _{4} 2 \\
3=6 \frac{1}{2}
\end{gathered}
$$

4) $\log _{a} M=\log _{a} N \Leftrightarrow M=N$ (Equality of Logs)

$$
\log _{3} 27=\log _{3} 27
$$

Furthermore...
5) $\log _{a} a^{k}=\ldots$
and 6) $\boldsymbol{a}^{\log _{a} k}=\ldots$

Let's try a few...
Write as a rational number, if possible, or as a single logarithm.
7) $\log _{5} 2+\log _{5} 3+\log _{5} 4=\log _{5} 24$
8) $\log _{2} 8+\log _{2} 6-\log _{2} 3=\log _{2} 16=4$
9) $\frac{1}{2} \log _{6} 9+\log _{6} 12=\log _{6} 36=2$
10) $\log _{2} 48-\frac{1}{3} \log _{2} 27=\log _{2} 16=4$
11) $2 \log _{3} 6-2 \log _{3} 2=\log _{3} 9=2$
12) $\log A+2 \log B-3 \log C=\log \frac{A * B^{2}}{C^{3}}$
13) $\frac{1}{2}(\log M+\log N-\log P)=\log \frac{(M N P)^{\frac{1}{2}}}{P}$
14) $\frac{1}{3}(2 \log M-\log N-\log P)=\log \frac{(M N P)^{\frac{2}{3}}}{N P}$

Find the value of X. (Use a calculator here...)
15) $\log X=5.7419=551,950.33$ 16) $\log X=0.7332-2=.0541$

Express y in terms of x :
17) $\log y=2 \log x y=x^{2}$
18) $\log y=\log 4-2 \log x y=\left(\frac{2}{x}\right)^{2}$
19) $\log y=-\log x$
$Y=1 / X$

$$
\text { 20) } \log _{y=2 x^{2}} y=2 \log x+\log 2
$$

If $\log _{8} 3=a$ and $\log _{8} 5=b$, express the given logarithm in terms of a and b.
21) $\log _{8} 75 a+2 b$
22) $\log _{8} 2252 a+2 b$
23) $\log _{8} 0.12$
. $12=3 / 25=>a-2 b$
Solve.
24) $\log _{2}(x+2)+\log _{2} 5=4 \log _{2} 5(x+2)=4=>2^{4}=5 x+10 \Rightarrow>16=5 x+10 \Rightarrow>x=6 / 5$
25) $\log _{3} x+\log _{3}(x-2)=1 \log _{3} x(x-2)=1=>3^{1}=x^{2}-2 x=>0=x^{2}-2 x-3 \Rightarrow>x=3$

CHANGE OF BASES

Some exponential equations can be easily solved without a calculator by changing both sides of the equation to the same base. For example,

Solve the equation $\quad 9^{2 x}=3 \sqrt[3]{3} \quad\left(3^{2}\right)^{2 x}=3^{\star} 3^{1 / 2}=3^{3 / 2} \Rightarrow>4 x=3 / 2 \Rightarrow x x=3 / 8$

Others Cannot be easily expressed as powers of the same base. These equations require that you take logarithms of both sides. You can use any base log, but base 10 and base e are the most useful because they are available in your Let's try to solve a few... Express answers correct to 3 decimaliplaces. (note: no graphical solution accepted here...)
26) $\mathbf{3}^{x}=12 \frac{\ln 12}{\ln 3}=x=2.262$
27) $\mathbf{4}^{x}=20 \frac{\ln 20}{\ln 4}=x=2.161$
28) $e^{.05 t}=3 \quad \ln 3=.05 t=221.972$
30) $e^{x-1}=3 x=2.099$
31) $\ln x+\ln (x+3)=\ln 10$

$$
x^{2}+3 x=10 x=-5 \text { or } 2 \Rightarrow x=2
$$

32) The value of a new $\$ 30,000$ car depreciates 30% per year. What is its value after 3 years? (use the continuous growth/decay formula).
$30,000^{*} .7^{3}=10,290$ or $30,000 e^{-.3567 t}=10,390$
33) A radioactive element has a half-life(*) of 6 years. If you have 10 kg of the element now, how much will be left after 2 years?

$$
.5=e^{r 6} \quad \ln (.5)=r 6 \quad r=-.1155
$$

$$
10 e^{-.1255^{* 2}}=7.937 \mathrm{~kg} \quad \text { or } 10^{*} .5^{6 / 2}=7.937
$$

(*) Half-life means that it takes 6 years for the element to decay to half or 50% of the original amount.
34) $A \$ 10,000$ certificate of deposit at a certain bank will double in value in 9 years (those good old days...). Assuming a continuous exponential model, (i) Find the annual rate of interest; (ii) Give a formula for the accumulated amount tyears after the investment is made, and (iii) how long does it take for the money to triple in value?
i) $2=(1+r)^{9}=>2^{1 / 9}-1=.0801 \%$
ii) $10,000(1.0801)^{t}=T V$ or $10,000 * e^{.077 t}=T V$
iii) $3=e^{077 t} \Rightarrow>14.2647$

Last but not least...
The CHANGE OF BASE formula enables you to find the logarithm of a number in one base if logs in a different base are known.

$$
\log _{a} c=\frac{\log _{b} c}{\log _{b} a}
$$

Solve by Changing from the given base to either common logs or natural logs:
35) $\log _{7} 120$
$\frac{\ln (120)}{\ln (7)}=2.4603$
36) $\log _{4} 300$
$\frac{\ln (300)}{\ln (4)}=4.1144$
37) Use the change of base formula to graph the function $\boldsymbol{y}=\log _{2} \boldsymbol{x}$. Then, compare it with $\boldsymbol{y}=\mathbf{2}^{x}$, by entering each in $Y 1$ and $Y 2$. ZOOM SQUARE and write your (obvious) comments below.

They are inverses

