Pre-Calculus 41/0-4.2
Modeling Exponential Growth and Decay - Preliminary Concepts By Mrs. Trebat

Name: \qquad

NATURAL GROWTH/DECAY MODELS - Many quantities such as savings accounts or populations grow (or decay) at a constant percentage rate per unit of time. Such growth is called natural growth.

In this assignment, use one of the following two models to describe natural growth or decay of a certain quantity, A, over time, t :

$$
\text { Growth: } A(t)=A_{0}(1+r)^{t} \quad \text { Decay: } A(t)=A_{0}(1-r)^{t}
$$

where $A_{0}=$ initial amount present
(*) Note: If an initial population of 10 bacteria increase by 3.5% every day, write the model as $A(t)=40(1.035)^{t}$, and not as $A(t)=40(1+.035)^{t}$

EXTRA 1) Suppose the United States population, starting at 3.9 million in 1790, had continued indefinitely to grow at a constant 3% annual rate.
a) Find a model to describe the growth of the U.S. population where $t=0$ represents the year 1790.

$$
P(t)=3.9^{\star} 1.03^{\dagger}
$$

\qquad
b) Use your model to predict the U.S. population in 1890. Compare this with the actual population in 1890 which was 63 million.
$3.9^{\star} 1.03^{\wedge} 100=74.9527 \mathrm{~mm}$ \qquad
c) Would it be realistic to use this model to predict the US population in 2010? What would it be? How does this figure compare with the actual? _No, there are physical limitations to growth that were not relevant in 1790. The predicted value of $2,601.6810 \mathrm{~mm}$ is greater than 309 mm .

DO 2) The revenue for the state of Georgia from 1990 to 2001 can be modeled approximately by the natural growth function $R(t)=6.8(1.068)^{t}$, where t is years after 1990 and $R(t)$ is measured in billions of dollars.
a) According to this model, what was the State of Georgia's revenue in 1990? _ 6.8 billion \qquad
b) What is the growth factor? __1.068__ What is the growth rate?
\qquad 6.8\% \qquad
c) Use the model to predict the year in which Georgia's revenue reaches $\$ 10$ billion. Explain how you use your graphing calculator to solve this problem.

Year is: 1996 \qquad
d) What is Georgia's revenue in the year 2013?

Revenue in 2013: \qquad $\$ 30.8779$ billion \qquad

THE HALF-LIFE OF CAFFEINE

The half-life of any substance is the amount of time it takes the substance to decrease by 50% of its initial amount.

Example: If some radioactive substance decays at the rate of 1.3% every year, then its half-life is solved by picking any initial amount, let's say 10 mg , and solving the equation $5=10(0.987)^{t}$. Remember that the decay factor is obtained by solving $1-r$ which in this case is $1-0.013$!

DO 3) The amount of caffeine in the bloodstream decreases at an hourly rate of approximately 11.5%.
a) A can of Red Bull energy drink contains about the same amount of caffeine as a cup of regular coffee, 100 mg . If you drink a Red Bull or a cup of coffee, how much caffeine will remain in your bloodstream after 2 hours? Show the model you use to answer this question.
\qquad
Solution: \qquad 78.3225 \qquad
b) What is the half-life of caffeine in a healthy adult? Show the model you use.

Model: __. $5=.885^{\dagger}$ \qquad
Answer: _5.6737 \qquad
EXTRA 4) Many people use the over-the-counter medication ibuprofen for relief from muscle strains and joint pain. The amount of ibuprofen in an adult's bloodstream decreases at an hourly rate of approximately 29%, and a normal adult dose is 400 mg .
a) Find a natural growth model $I(t)$ that gives the amount of ibuprofen in the bloodstream as a function of time t in hours.

$$
I(\dagger)=400(.71)^{\dagger}
$$

\qquad
b) What is the half-life of ibuprofen? Show the equation you use.

$$
. .5=.71^{\dagger} _\dagger=2.0238 \mathrm{hrs}
$$

c) How much ibuprofen is in a person's bloodstream after 3 hours?

PART II: Algebra Skills
Solve each exponential equation using the properties of exponents. Follow the example and strategy given below.

Strategy for solving exponential equations:

- Step 1: Express each side of the equation as a power of the same base
- Step 2: Set the exponents equal and then solve
- Step 3: Check the answer
Example: Solve
a) $16^{x}=\frac{1}{4}$
b) $5^{4-x}=25^{x-1}$

Step 1:
a) $\left(4^{2}\right)^{x}=4^{-1}$
b) $5^{4-x}=\left(5^{2}\right)^{x-1}$

$$
4^{2 x}=4^{-1}
$$

$$
5^{4-x}=5^{2 x-2}
$$

$$
2 x=-1
$$

$$
4-x=2 x-2
$$

$$
x=-\frac{1}{2}
$$

$$
x=2
$$

Step 3: Check by substitution of the value found for x into the original equation...
MANY OF THE SOLUTIONS SHOWN ARE LONG SOLUTIONS. WITH PRACTICE YOU SHOULD SEE THESE ANSWERS WITH FEWER STEPS

DO 1) $3^{x}=\frac{1}{27}$
$3^{x}=\frac{1}{3^{3}}=3^{=3}$
$X=-3$

EXTRA 2) $5^{x}=\sqrt{125}$
$5^{x}=\left(5^{3}\right)^{1 / 2}=5^{3 / 2}$
$x=3 / 2$
4) $4^{1-x}=8$
$\left(2^{2}\right)^{1-x}=2^{2-2 x}=2^{3}$
$2-2 x=3$
$x=-1 / 2$

EXTRA 5) $27^{2 x-3}=3$
$\left(3^{3}\right)^{2 x-3}=3^{6 x-9}=3^{1}$
$6 x-9=1$
$X=5 / 3$

DO 6) $49^{x-2}=7 \sqrt{7}$
$\left(7^{2}\right)^{x-2}=7^{1} 7^{1 / 2}$
$7^{2 x-4}=7^{3 / 2}$
$2 x-4=3 / 2$
X=11/4

DO 7) $4^{2 x+5}=16^{x+1}$
$4^{2 x+5}=\left(4^{2}\right)^{x+1}$
$2 x+5=2 x+2$
No solution
$\left(16^{1 / 2}\right)^{2 x+5}=16^{x+1}$
$X+2.5=X+1$
No solution

EXTRA 8) $25^{2 x}=5^{x+6}$
$5^{4 x}=5^{x+6}$
$4 x=x+6$
$x=2$

EXTRA 9) $6^{x+1}=36^{x-1}$
$x+1=2 x-2$
$x=3$

DO 10) $3^{2 x}-6 \cdot 3^{x}+9=0$
$3^{2 x}-2 * 3^{1} * 3^{x}+3^{2}=3^{2 x}-2 * 3^{1+x}+3^{2}$
$=\left(3^{x}-3^{1}\right)^{2}$
$3^{x}=3^{1}$

$$
X=1
$$

