Pre-Calculus 41/0 - 4.2 Modeling Exponential Growth and Decay - Preliminary Concepts By Mrs. Trebat

Name: \_\_\_\_\_

NATURAL GROWTH/DECAY MODELS - Many quantities such as savings accounts or populations grow (or decay) at a constant percentage rate per unit of time. Such growth is called natural growth.

In this assignment, use one of the following two models to describe natural growth or decay of a certain quantity, A, over time, t:

Growth:  $\mathcal{A}(t) = \mathcal{A}_{o}(1+r)^{t}$  Decay:  $\mathcal{A}(t) = \mathcal{A}_{o}(1-r)^{t}$ 

where  $A_{b}$  = initial amount present

(\*) Note: If an initial population of 10 bacteria increase by 3.5% every day, write the model as  $A(t) = 40(1.035)^{t}$ , and not as  $A(t) = 40(1+.035)^{t}$ 

**EXTRA** 1) Suppose the United States population, starting at 3.9 million in 1790, had continued indefinitely to grow at a constant 3% annual rate.

a) Find a model to describe the growth of the U.S. population where t=0 represents the year 1790.

P(†) = 3.9\*1.03<sup>+</sup>\_\_\_\_\_

b) Use your model to predict the U.S. population in 1890. Compare this with the actual population in 1890 which was 63 million.

3.9\*1.03^100=74.9527mm\_\_\_\_\_

c) Would it be realistic to use this model to predict the US population in 2010? What would it be? How does this figure compare with the actual? \_No, there are physical limitations to growth that were not relevant in 1790. The predicted value of 2,601.6810mm is greater than 309 mm. <u>DO</u> 2) The revenue for the state of Georgia from 1990 to 2001 can be modeled approximately by the natural growth function

 $R(t) = 6.8(1.068)^{t}$ , where t is years after 1990 and R(t) is measured in billions of dollars.

- a) According to this model, what was the State of Georgia's revenue in 1990? \_\_\_6.8 billion\_\_\_\_\_
- b) What is the growth factor? \_\_\_1.068\_\_\_\_ What is the growth rate? \_\_\_\_6.8%\_\_\_\_\_
- c) Use the model to predict the year in which Georgia's revenue reaches \$10 billion. Explain how you use your graphing calculator to solve this problem.

Year is: 1996\_\_\_\_\_

d) What is Georgia's revenue in the year 2013?

Revenue in 2013: \_\_\_\_\$30.8779 billion \_\_\_\_



THE HALF-LIFE OF CAFFEINE

The <u>half-life</u> of any substance is the amount of time it takes the substance to decrease by 50% of its initial amount.

Example: If some radioactive substance decays at the rate of 1.3% every year, then its half-life is solved by picking any initial amount, let's say 10 mg, and solving the equation  $5 = 10(0.987)^{t}$ . Remember that the decay factor is obtained by solving 1 - r which in this case is 1 - 0.013!

<u>**DO</u>** 3) The amount of caffeine in the bloodstream decreases at an hourly rate of approximately 11.5%.</u>

a) A can of Red Bull energy drink contains about the same amount of caffeine as a cup of regular coffee, 100 mg. If you drink a Red Bull or a cup of coffee, how much caffeine will remain in your bloodstream after 2 hours? Show the model you use to answer this question.

Model: \_\_\_\_\_f(x)=100(.885)<sup>†</sup>\_\_\_\_\_\_

Solution: \_\_\_\_\_78.3225\_\_\_\_\_

b) What is the half-life of caffeine in a healthy adult? Show the model you use.

Model: \_\_\_\_.5=.885<sup>+</sup>\_\_\_\_\_ Answer: \_5.6737\_\_\_\_\_

**EXTRA** 4) Many people use the over-the-counter medication ibuprofen for relief from muscle strains and joint pain. The amount of ibuprofen in an adult's bloodstream decreases at an hourly rate of approximately 29%, and a normal adult dose is 400 mg.

a) Find a natural growth model I(t) that gives the amount of ibuprofen in the bloodstream as a function of time t in hours.

\_\_\_\_I(†)=400(.71)<sup>†</sup>\_\_\_\_\_

b) What is the half-life of ibuprofen? Show the equation you use.

\_.5=.71<sup>t</sup>\_t=2.0238 hrs\_\_\_\_\_

c) How much ibuprofen is in a person's bloodstream after 3 hours?

\_\_\_\_\_143.1644 mg\_\_\_\_\_

PART II: Algebra Skills

Solve each exponential equation using the properties of exponents. Follow the example and strategy given below.

Strategy for solving exponential equations:

- Step 1: Express each side of the equation as a power of the same base
- Step 2: Set the exponents equal and then solve
- Step 3: Check the answer

Example: Solve a)  $16^x = \frac{1}{4}$ b)  $5^{4-x} = 25^{x-1}$ b)  $5^{4-x} = (5^2)^{x-1}$ a)  $(4^2)^x = 4^{-1}$ Step 1:  $5^{4-x} = 5^{2x-2}$ 4-x = 2x-2 $4^{2x} = 4^{-1}$ 2x = -1Step 2:  $x=-\frac{1}{2}$ x = 2

Step 3: Check by substitution of the value found for x into the original equation ...

## MANY OF THE SOLUTIONS SHOWN ARE LONG SOLUTIONS. WITH PRACTICE YOU SHOULD SEE THESE ANSWERS WITH FEWER STEPS

| <b><u>bo</u></b> 1) $3^{\times} = \frac{1}{27}$ | <b>EXTRA</b> 2) $5^{\times} = \sqrt{125}$ |
|-------------------------------------------------|-------------------------------------------|
| $3^x = \frac{1}{3^3} = 3^{=3}$                  | $5^x = (5^3)^{1/2} = 5^{3/2}$             |
| X=-3                                            | x=3/2                                     |

| <b>EXTRA</b> 3) $8^{2+x} = 2$  | 4) $4^{1-x} = 8$               |
|--------------------------------|--------------------------------|
| $(2^3)^{2+x} = 2^{6+3x} = 2^1$ | $(2^2)^{1-x} = 2^{2-2x} = 2^3$ |
| 1=6+3×                         | 2-2×=3                         |
| -5/3=x                         | x=-1/2                         |

| <b>EXTRA</b> 5) $27^{2x-3} = 3$ | <b><u>bo</u></b> 6) $49^{x-2} = 7\sqrt{7}$ |
|---------------------------------|--------------------------------------------|
| $(3^3)^{2x-3} = 3^{6x-9} = 3^1$ | $(7^2)^{x-2} = 7^1 7^{1/2}$                |
| 6x-9=1                          | $7^{2x-4} = 7^{3/2}$                       |
| X=5/3                           | 2x-4=3/2                                   |
|                                 | X=11/4                                     |

| <b><u>bo</u></b> 7) $4^{2x+5} = 16^{x+1}$<br>$4^{2x+5} = (4^2)^{x+1}$ | <b>EXTRA</b> 8) $25^{2x} = 5^{x+6}$ |
|-----------------------------------------------------------------------|-------------------------------------|
| 2x+5=2x+2                                                             | 4x=x+6                              |
| No solution                                                           | x=2                                 |
| $\left(16^{1/2}\right)^{2x+5} = 16^{x+1}$                             |                                     |
| X+2.5=X+1                                                             |                                     |
| No solution                                                           |                                     |

| <b>EXTRA</b> 9) $6^{x+1} = 36^{x-1}$ | <b><u>bo</u></b> 10) $3^{2x} - 6 \cdot 3^{x} + 9 = 0$               |
|--------------------------------------|---------------------------------------------------------------------|
| x+1=2x-2                             | $3^{2x} - 2 * 3^{1} * 3^{x} + 3^{2} = 3^{2x} - 2 * 3^{1+x} + 3^{2}$ |
| x=3                                  | $= (3^{x} - 3^{1})^{2}$<br>3 <sup>x</sup> = 3 <sup>1</sup><br>X=1   |