

$$\frac{1}{\cos \theta} = \sec \theta$$

$$\frac{1}{\pm 3/\sqrt{34}} = \sec \theta$$

$$\pm \frac{\sqrt{34}}{3} = \sec \theta$$

$$\tan \theta = \frac{-5}{3}$$
 What is secant? What is secant²?

$$1+\tan^{2}\theta = \sec^{2}\theta$$

$$1+\left(\frac{-5}{3}\right)^{2} = \sec^{2}\theta$$

$$1+\frac{25}{9} = \sec^{2}\theta$$

$$\frac{34}{9} = \sec^{2}\theta$$

$$\pm\sqrt{\frac{34}{9}} = \sec\theta$$

$$\pm\frac{\sqrt{34}}{3} = \sec\theta$$

Overview of 5.4 challenges:

- Move from unit circle thinking to thinking about the function (and still remember unit circle)
- Apply your transformation logic to the sine function.
- Pick up the details and new vocab.
- Go forwards and backwards (make graph from equation, equation from graph)
- Practice so you can work with the graphs fast. WATCH THE X-AXIS

Properties of the Cosine Function

- 1. The domain is the set of all real numbers.
- 2. The range consists of all real numbers from -1 to 1, inclusive.
- 3. The cosine function is an even function, as the symmetry of the graph with respect to the y-axis indicates.
- 4. The cosine function is periodic, with period 2π .
- 5. The *x*-intercepts are ..., $-\frac{3\pi}{2}$, $-\frac{\pi}{2}$, $\frac{\pi}{2}$, $\frac{3\pi}{2}$, $\frac{5\pi}{2}$,...; the y-intercept is 1.
- 6. The maximum value is 1 and occurs at $x = \dots, -2\pi, 0, 2\pi, 4\pi$, 6π ,...; the minimum value is -1 and occurs at $x = \dots, -\pi$, π , 3π , 5π ,

Properties of the Sine Function

- 1. The domain is the set of all real numbers.
- 2. The range consists of all real numbers from -1 to 1, inclusive.
- 3. The sine function is an odd function, as the symmetry of the graph with respect to the origin indicates.
- 4. The sine function is periodic, with period 2π .
- 5. The x-intercepts are ..., -2π , $-\pi$, 0, π , 2π , 3π , ...;
- the y-intercept is 0. 6. The maximum value is 1 and occurs at $x = ..., -\frac{3\pi}{2}, \frac{\pi}{2}, \frac{5\pi}{2}$,
 - $\frac{9\pi}{2}$,...; the minimum value is -1 and occurs at $x = \dots, -\frac{\pi}{2}$,

Sinusoidal function

$$y = Af(\omega x + \phi) + B$$
$$y = A\sin(\omega x + \phi) + B$$

Period - The distance along the x-axis from the beginning of the cycle to the end. Amplitude - The distance along the y-axis from minimum to maximum, divided by 2. Midline - The horizontal line midway between the minimum and maximum Phase shift - The left right shift, but not what you would expect

Transformations: Horizontal stretch-compression

Sine repeats itself after every 2π - has a period of 2π

When you stretch or compress horizontally it repeats faster or slower.

Period: lengthens from π to 4π (slower) or shortens from π to to $\pi/2$ (faster)

ω

Tricky part 1)
$$y = A\sin(\omega x + \phi) + B$$

The period is inversely related to ω

If $\omega > 0$, the amplitude and period of $y = A \sin(\omega x)$ and $y = A \cos(\omega x)$ are given by

Amplitude =
$$|A|$$
 Period = $T = \frac{2\pi}{\omega}$ (1)

Tricky part 2)

You can't read the phase shift from the equation unless you factor

$$y = A\sin(\omega\left(x + \frac{\phi}{\omega}\right)) + B$$