### 5.4 THE GRAPH OF THE SINE AND COSINE FUNCTIONS

| Angle $\boldsymbol{x}$ | $y=\sin x$ | $(x, y)$ | Angle $\boldsymbol{x}$ | $y=\cos x$ | ( $x, y$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | $\mathbf{( 0 , 0 )}$ | 0 | 1 | (0,1) |
| $\pi / 2$ | 1 | $(\pi / 2,1)$ | $\pi / 2$ | 0 | ( $\pi / 2,0$ ) |
| $\pi$ | 0 | ( $\pi, 0$ ) | $\pi$ | -1 | ( $\pi,-1$ ) |
| $3 \pi / 2$ | -1 | (3m/2,-1) | $3 \pi / 2$ | 0 | (3m/2,0) |
| $2 \pi$ | 0 | (2m,0) | $2 \pi$ | 1 | (2m,1) |

graphs of sine and cosine over one period (one wave length)


The sine and cosine functions are periodic with a fundamental period of $360^{\circ}$ or $\mathbf{2 \pi}$. Their graphs are called sine waves or sinusoids because of their repeated pattern.

## 1) The Graph of $y=\sin X$

Using the grid below, let's sketch the graph of $y=\boldsymbol{\operatorname { s i n }} x$ in the interval $[-4 \pi, 4 \pi]$.

a) Domain $\qquad$ All reals or $[-4 \pi, 4 \pi]$
b) Range: _-1,1 $\qquad$
c) $X$-intercepts: $0+\pi K$, where $k$ is an int. d) $Y$-intercept: $(0,0)$
e) The maximum value of 1 occurs at $X=\_\pi / 2+2 \pi k$, where $k$ is an int. $\qquad$
f) The minimum value of -1 occurs at $X=\_3 \pi / 2+2 \pi k$, where $k$ is an int. $\qquad$
g) The sine function is $\qquad$ (ODD/EVEN) because $\sin (-x)=-\sin (x)^{\prime}$ for every $x$ in its domain; the graph is symmetric about the _origin $\qquad$
h) The period (one complete cycle) of the sine function is $\qquad$
i) The equation of the midline of the graph is $\ldots y=0$ $\qquad$
j) The amplitude (distance between the midline and the points of maximum or minimum values) is $\qquad$ 1
2) The Graph of $y=\cos x$

Using the grid below, let's sketch the graph of $\boldsymbol{y}=\boldsymbol{\operatorname { c o s }} \boldsymbol{x}$ in the interval $[-4 \pi, 4 \pi]$.

a) Domain: All reals or $[-4 \pi, 4 \pi]$
b) Range: _[-1,1]
c) X-intercepts: $\pi / 2+\pi K$, where $k$ is an int. d) $Y$-intercept: $(0,1)$
e) The maximum value of 1 occurs at $X=\_0+2 \pi k$, where $k$ is an int. $\qquad$
f) The minimum value of -1 occurs at $X=-\pi+2 \pi k$, where $k$ is an int. $\qquad$
g) The cosine function is $\qquad$ (ODD/EVEN) because $\cos (-x)=\cos (x)$ for every $x$ in its domain; the graph is symmetric about the _y-axis_ $\qquad$
h) The period (one complete cycle) of the cosine function is $\quad 2 \pi$ $\qquad$
i) The equation of the midline of the graph is $\qquad$
$\qquad$
j) The amplitude (distance between the midline and the points of maximum or minimum values) is $\qquad$ 1

## Amplitude, Vertical Stretches and Shifts

The amplitude of a sinusoidal can be found by using the formula:

$$
\text { Amplitude }=\frac{(\text { maximum })-(\text { minimum })}{2}
$$

3) Using your graphing calculator, graph the functions below. Find the amplitude, and the equation of the midline of the graph.

| Equation | Amplitude | Equation of Midline |
| :--- | :--- | :--- |
| $y=3 \sin x$ | 3 | $y=0$ |
| $y=5 \sin x+2$ | 5 | $y=2$ |
| $y=\frac{1}{2} \sin x-3$ |  | $y=-3$ |

4) Write an equation to obtain the midline.
$Y=($ maximum + minimum $) / 2$
Generalizations on the graph of $y=A \sin x+B$ or $y=A \cos x+B$
5) Discuss the roles played by parameters $A$ and $B$ :
a) The role of $A$ : $\qquad$ Sets amplitude $\qquad$
b) The role of B : $\qquad$ Vertical shift $\qquad$
c) Does $B$ affect the amplitude of the sine wave? Explain.
$\qquad$ No, it is applied a simple addition after the sin is calculated
6) Find an equation for the following graph: $y=3 \sin (x)-2$


## Period of the Sine and Cosine Functions

Background: The period (one complete cycle) along the $x$-axis of the functions $y=\sin x$ or $y=\cos x$ is $\qquad$ radians or $\_360^{\circ}$ $\qquad$ degrees.
7) Does the amplitude of the sinusoidal function affect the period? Explain.
$\qquad$ No, period is determined before sine is calculated. $\qquad$
8) Graph and compare the functions $y=\boldsymbol{\operatorname { s i n }} 2 x$ and $y=\boldsymbol{\operatorname { s i n }} x$ on the same graph. Explain what happens to the period when $x$ is multiplied by 2 . (use the terms horizontal stretch or compression)
$\qquad$ The period is horizontally compressed by a factor of 2 . $\qquad$
$\qquad$ The period is cut in half. $\qquad$
9) Graph and compare the graphs of $y=\cos \frac{x}{2}$ and $y=\cos x$. Explain What happens to the period when $x$ is multiplied by $\frac{1}{2}$.
$\qquad$ The period doubles. $\qquad$
Now we are ready to draw some generalizations...
10) The period of a sinusoid of the type $y=\sin \omega x$ or $y=\cos \pi x$, for any real number $\omega$ is given by the formula:

$$
\text { Period } T=\_2 \pi / \omega
$$

11) Furthermore, the following effects are observed when $\boldsymbol{m} 1$ and when $0<\omega<1$ :
$\boldsymbol{\sigma}>1$ __It is horizontally compressed
$|\boldsymbol{w}|<1 \ldots \ldots$ It is horizontally streched $\qquad$
12) Let $f(x)=2 \sin (3 x)-4$.
a) The amplitude is $\qquad$ 2 $\qquad$ .
b) The equation of the midline is $\qquad$ $y=-4$ $\qquad$ .
c) The period is $\qquad$ $2 \pi / 3$ $\qquad$ .
d) The Domain is $\qquad$ All reals $\qquad$ and the range _[-6,-2]
