		-	3.0 113	- 9		
Angle x	$y = \sin x$	(x,y)		Angle <i>x</i>	$y = \cos x$	(x,y)
0	0	(0,0)		0	1	(0,1)
$\frac{\pi}{2}$	1	(π/2,1)		$\frac{\pi}{2}$	0	(π/2,0)
π	0	(π,0)		π	-1	(π,-1)
$3\pi/2$	-1	(3π/2,-1)		$3\pi/2$	0	(3π/2,0)
2π	0	(2π,0)	The	2π	1	(2π,1)

5.4 THE GRAPH OF THE SINE AND COSINE FUNCTIONS

graphs of sine and cosine over one period (one wave length)

The sine and cosine functions are **periodic** with a fundamental period of 360° or 2π . Their graphs are called **sine waves** or **sinusoids** because of their repeated pattern.

1) The Graph of Y = Sin X

Using the grid below, let's sketch the graph of $y = \sin x$ in the interval $[-4\pi, 4\pi]$.

2) The Graph of $Y = \cos x$

Using the grid below, let's sketch the graph of $y = \cos x$ in the interval $[-4\pi, 4\pi]$.

Amplitude, Vertical Stretches and Shifts

The amplitude of a sinusoidal can be found by using the formula:

3) Using your graphing calculator, graph the functions below. Find the amplitude, and the equation of the midline of the graph.

Equation	Amplitude	Equation of Midline
$y = 3 \sin x$	3	У=0
$y = 5 \sin x + 2$	5	Y=2
$y=\frac{1}{2}\sin x-3$	1/2	Y=-3

- 4) Write an equation to obtain the midline.
- Y = (maximum + minimum)/2

Generalizations on the graph of $y = A \sin x + B$ or $y = A \cos x + B$

5) Discuss the roles played by parameters A and B:

a) The role of A: _____Sets amplitude_____

b) The role of B: _____Vertical shift_____

c) Does B affect the amplitude of the sine wave? Explain.

_____No, it is applied a simple addition after the sin is calculated_

6) Find an equation for the following graph: y = 3sin(x) - 2

Period of the Sine and Cosine Functions

Background: The period (one complete cycle) along the x-axis of the functions $y = \sin x$ or $y = \cos x$ is 2π radians or 360° degrees.

- Does the amplitude of the sinusoidal function affect the period? Explain.
 _____No, period is determined before sine is calculated._____
- 8) Graph and compare the functions y = sin 2x and y = sin x on the same graph. Explain what happens to the period when x is multiplied by 2. (use the terms horizontal stretch or compression)

_____The period is horizontally compressed by a factor of 2._____ ____The period is cut in half._____

9) Graph and compare the graphs of y = cos x/2 and y = cos x. Explain What happens to the period when x is multiplied by 1/2.
_____The period doubles.______

Now we are ready to draw some generalizations...

10) The period of a sinusoid of the type $y = \sin \omega x$ or $y = \cos \omega x$, for any real number ω is given by the formula:

Period T = $2\pi/\omega$ ____

11) Furthermore, the following effects are observed when $\varpi > 1$ and when $0 < \varpi < 1$:

 $\sigma > 1$ _____It is horizontally compressed______

 $|\sigma| < 1$ _____It is horizontally streched______

12) Let
$$f(x) = 2\sin(3x) - 4$$
.

a) The amplitude is ______.

b) The equation of the midline is <u>y=-4</u>.

c) The period is $2\pi/3$.

d) The Domain is ____All reals_____ and the range _[-6,-2]____.