5.5 Graphs of Tangent, Cotangent, Cosecant, and Secant Functions

TANGENT AND COTANGENT FUNCTIONS

What you need to remember:

Reciprocal Identities:	$\tan\theta=\frac{\sin\theta}{\cos\theta}$	$\cot heta = rac{\cos heta}{\sin heta}$	

1) Complete the table below for the tangent and cotangent values (in decimal form):

θ	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
tan <i>θ</i>	0	1	Und	-1	0	1	Und	-1	0
$\cot \theta$	Und	1	0	-1	Und	1	0	-1	Und

Period of Tangent and Cotanget:

2) You will notice that the values of $\tan \theta$ repeat every π units. Therefore, the period of the function is π . Since **cot** θ is the reciprocal of **tan** θ both functions will have the same period.

Behavior of Tangent for angle values near 90°

Notice also the "behavior" of $\tan \theta$ when the values of θ get closer and closer to $\frac{\pi}{2}$. As the values of θ "approach" $\frac{\pi}{2}$ coming from the left (that is, for angles that are less than $\frac{\pi}{2}$ but getting closer and closer to it), the values of $\tan \theta$ get very large (use your calculator to verify this...). We summarize using the following notation:

$$as \ \theta \to \frac{\pi}{2}^{-}, \ tan \ \theta \to \infty$$

Likewise,
$$as \ \theta \to \frac{\pi}{2}^{+}, \ tan \ \theta \to -\infty$$

We are now ready to graph ...

THE GRAPH OF Y=TAN X

3) Use the values of the table above to sketch the graph of $y = \tan x$.

Summary of the graph of y = tan x:

- 4) Domain: _All reals exc. $\frac{\pi}{2}$ + πK where K is an int. 5) Range: _All reals
- 6) Vertical Asymptotes: $-\frac{\pi}{2} + \pi K$ where K is an int.____
- 7) Even/Odd Properties (explain): Odd, -tan(x)=tan(-x)____
- 8) x-intercepts: (0+ π K where K is an integer,0)
- 9) y-intercepts: __(0,0)_____
- 10) Period: ___π____

THE GRAPH OF THE COTANGENT FUNCTION Y = COT X

Summary of the graph of Y = Cot X:

- 4) Domain: _All reals exc. π + π K where K is an int. 5) Range: _All reals
- 6) Vertical Asymptotes: $\pi + \pi K$ where K is an int.
- 7) Even/Odd Properties (explain): Odd, -cotan(x)=cotan(-x)____
- 8) x-intercepts: $(\frac{\pi}{2} + \pi K \text{ where } K \text{ is an integer, 0})$
- 9) y-intercepts: __None_____
- 10) Period: ___π____

THE GRAPH OF THE COSECANT FUNCTION Y = CSC X

Recall that the cosecant is the **reciprocal** of the sine function:

$$\csc \theta = \frac{1}{\sin \theta}$$

It is natural to expect some "relationship" between the graphs of sine and cosecant. For example, if the **period** of the sine is 2π , we should expect the cosecant to have the same period.

θ	0	π	π	<u>3π</u>	π	5π	<u>3π</u>	<u>7</u> π	2π
		4	2	4		4	2	4	
sin $ heta$	0	$\sqrt{2}$	1	$\sqrt{2}$	0	$-\sqrt{2}$	-1	$-\sqrt{2}$	0
		2		2		2		2	
$\csc \theta$	Und	$\sqrt{2}$	1	$\sqrt{2}$	Und	$-\sqrt{2}$	-1	$-\sqrt{2}$	Und

19) Let's complete the table before attempting to graph:

20) The vertical asymptotes of $y = \csc x$ will be $0+\pi K$ where K is an integer

21) Graph Y = CSC X below (graph first the sine and use it as a guideline...)

- 22) Domain: All reals exc. πK where K is an int. 23) Range: $(-\infty, -1] \cup [1, \infty)$
- 24) Vertical Asymptotes: πK where K is an int.___
- 25) Even/Odd Properties (explain): Odd, -csc(x)=csc(-x)___
- 26) x-intercepts: __None_____
- 27) y-intercepts: ____None_____
- 28) Period: ___2π_____

THE GRAPH OF THE SECANT FUNCTION:

The secant is the **reciprocal** of the cosine function: $sec \theta = \frac{1}{cos \theta}$ Hence, there will be a "relationship" between the graphs of cosine and secant. For example, the **periods** of both cosine and secant functions is

3π 5π 3π 7π 0 2π θ π π π 4 2 4 2 4 4 $\sqrt{2}$ $\sqrt{2}$ $-\sqrt{2}$ $-\sqrt{2}$ -1 1 $\cos\theta$ 1 0 0 2 2 2 2 $\sqrt{2}$ $-\sqrt{2}$ $\sqrt{2}$ Und $-\sqrt{2}$ Und sec θ 1 -1 1

29) Let's complete the table before attempting to graph:

30) The **vertical asymptotes** of $y = \sec x$ will be $\pi/2 + \pi K$ where K is an int. 31) Graph Y = SEC X below (graph first the cosine and use it as a guideline...)

- 22) Domain: All reals exc. $\frac{\pi}{2}$ + π K, K is an int. 23) Range: _(- ∞ ,-1] \cup [1, ∞)____
- 24) Vertical Asymptotes: $\frac{\pi}{2} + \pi K$ where K is an int.____
- 25) Even/Odd Properties (explain): Even, sec(x)=sec(-x)___
- 26) x-intercepts: __None_____
- 27) y-intercepts: ___(0,1)_____
- 28) Period: ___2π____