5.5 Graphs of Tangent, Cotangent, Cosecant, and Secant Functions

TANGENT AND COTANGENT FUNCTIONS

What you need to remember:

$$
\text { Reciprocal Identities: } \tan \theta=\frac{\sin \theta}{\cos \theta} \quad \cot \theta=\frac{\cos \theta}{\sin \theta}
$$

1) Complete the table below for the tangent and cotangent values (in decimal form):

θ	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3 \pi}{4}$	π	$\frac{5 \pi}{4}$	$\frac{3 \pi}{2}$	$\frac{7 \pi}{4}$	2π
$\tan \theta$	0	1	Und	-1	0	1	Und	-1	0
$\cot \theta$	Und	1	0	-1	Und	1	0	-1	Und

Period of Tangent and Cotanget:

2) You will notice that the values of $\tan \theta$ repeat every π units. Therefore, the period of the function is π \qquad . Since $\cot \theta$ is the reciprocal of $\tan \theta$ both functions will have the same period.

Behavior of Tangent for angle values near 90° Notice also the "behavior" of $\tan \theta$ when the values of θ get closer and closer to $\frac{\pi}{2}$. As the values of θ "approach" $\frac{\pi}{2}$ coming from the left (that is, for angles that are less than $\frac{\pi}{2}$ but getting closer and closer to it), the values of $\tan \theta$ get very large (use your calculator to verify this...). We summarize using the following notation:

Likewise,

$$
\text { as } \theta \rightarrow \frac{\pi^{-}}{2}, \tan \theta \rightarrow \infty
$$

$$
\text { as } \theta \rightarrow \frac{\pi^{+}}{2}, \tan \theta \rightarrow-\infty
$$

We are now ready to graph...

THE GRAPH OF $Y=T A N X$

3) Use the values of the table above to sketch the graph of $y=\tan x$.

Summary of the graph of $y=\tan x$:
4) Domain: _All reals exc. $\frac{\pi}{2}+\pi K$ where K is an int. 5) Range: _All reals
6) Vertical Asymptotes: $-\frac{\pi}{2}+\pi K$ where K is an int. \qquad
7) Even/Odd Properties (explain): Odd, $-\tan (x)=\tan (-x)$ \qquad
8) x-intercepts: _ $(0+\pi K$ where K is an integer, 0$)$ \qquad
9) y-intercepts: \qquad
10) Period: \qquad π \qquad

THE GRAPH OF THE COTANGENT FUNCTION $y=C O T X$

11) Since $\cot \theta=\frac{\cos \theta}{\sin \theta}=\frac{1}{\tan \theta}$ (the cotangent is the reciprocal of the tangent), the vertical asymptotes for this graph will occur at x-values of the form __ $0+\pi K$ where K is an integer \qquad

Summary of the graph of $Y=\operatorname{Cot} X$:
4) Domain: _All reals exc. $\pi+\pi K$ where K is an int. 5) Range: _All reals
6) Vertical Asymptotes: $-\pi+\pi \mathrm{K}$ where K is an int. \qquad
7) Even/Odd Properties (explain): Odd, $-\operatorname{cotan}(x)=\operatorname{cotan}(-x)$ \qquad
8) x-intercepts: $\quad\left(\frac{\pi}{2}+\pi K\right.$ where K is an integer, 0$)$
9) y-intercepts: \qquad None \qquad
10) Period: \qquad π \qquad

THE GRAPH OF THE COSECANT FUNCTION $\mathrm{Y}=\mathrm{CSC} \mathrm{X}$

Recall that the cosecant is the reciprocal of the sine function:

$$
\csc \theta=\frac{1}{\sin \theta}
$$

It is natural to expect some "relationship" between the graphs of sine and cosecant. For example, if the period of the sine is 2π, we should expect the cosecant to have the same period.
19) Let's complete the table before attempting to graph:

$\boldsymbol{y} \theta$	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3 \pi}{4}$	π	$\frac{5 \pi}{4}$	$\frac{3 \pi}{2}$	$\frac{7 \pi}{4}$	2π
$\sin \theta$	0	$\frac{\sqrt{2}}{2}$	1	$\frac{\sqrt{2}}{2}$	0	$\frac{-\sqrt{2}}{2}$	-1	$\frac{-\sqrt{2}}{2}$	0
$\boldsymbol{\operatorname { c s c }} \boldsymbol{\theta}$	Und	$\sqrt{2}$	1	$\sqrt{2}$	Und	$-\sqrt{2}$	-1	$-\sqrt{2}$	Und

20) The vertical asymptotes of $y=\csc x$ will be $0+\pi K$ where K is an integer
21) Graph $Y=\operatorname{CSC} X$ below (graph first the sine and use it as a guideline...)

22) Domain: All reals exc. πK where K is an int. 23) Range: _($-\infty,-1] \cup[1, \infty)$
23) Vertical Asymptotes: $\pi \mathrm{K}$ where K is an int.
24) Even/Odd Properties (explain): Odd, $-\csc (x)=\csc (-x)$ __
25) x-intercepts: \qquad None \qquad
26) y-intercepts: \qquad None \qquad
27) Period: \qquad
\qquad

THE GRAPH OF THE SECANT FUNCTION:

The secant is the reciprocal of the cosine function: $\sec \theta=\frac{1}{\cos \theta}$ Hence, there will be a "relationship" between the graphs of cosine and secant. For example, the periods of both cosine and secant functions is
\qquad
29) Let's complete the table before attempting to graph:

$\boldsymbol{\theta} \boldsymbol{\theta}$	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3 \pi}{4}$	π	$\frac{5 \pi}{4}$	$\frac{3 \pi}{2}$	$\frac{7 \pi}{4}$	2π
$\cos \theta$	1	$\frac{\sqrt{2}}{2}$	0	$\frac{-\sqrt{2}}{2}$	-1	$\frac{-\sqrt{2}}{2}$	0	$\frac{\sqrt{2}}{2}$	1
$\sec \theta$	1	$\sqrt{2}$	Ind	$-\sqrt{2}$	-1	$-\sqrt{2}$	Ind	$\sqrt{2}$	1

30) The vertical asymptotes of $y=\sec x$ will be $\pi / 2+\pi K$ where K is an int.
31) Graph $Y=S E C X$ below (graph first the cosine and use it as a guideline...)

32) Domain: All reals exc. $\frac{\pi}{2}+\pi K$, K is an int. 23) Range: _($\left.-\infty,-1\right] \cup[1, \infty)$
33) Vertical Asymptotes: $\frac{\pi}{2}+\pi \mathrm{K}$ where K is an int. \qquad
34) Even/Odd Properties (explain): Even, $\sec (x)=\sec (-x)$
35) x-intercepts: \qquad None \qquad
36) y-intercepts: \qquad $(0,1)$ \qquad
37) Period: \qquad π
