6.3 TRIGONOMETRIC IDENTITIES

What is an Identity?

DEFINITION of IDENTITY:

Two functions f and g are said to be **identically equal** if f(x) = g(x)For every value of x in the domains of both f and g.

Examples:

1) $(x + 3)^2 = x^2 + 6x + 9$ is an identity, by the definition above. Also, the sides can be restated to match based on a definition.

2) 2x + 3 = 11 is not an identity, because the two sides are only equal if x has a certain value. It is a conditional equation.

Which are identities? If not an identity, explain why.

3) $\sin^2 x + \cos^2 x = 1$ Identity because the left side = 1 for all x's

4) sec $x = \frac{1}{\cos x}$ Identity because no matter what the x the two sides are equal.

5) $x^2 + 4x + 3 = 0$ Not an identity. For many x's the two sides are not equal

SUMMARY OF TRIGONOMETRIC IDENTITIES

QUOTIENT IDENTITIES:		
tan $\theta =$	<i>cot</i> $\theta =$	
Sinθ/Cosθ <u>RECIPROCAL IDENTITIES</u> :	Cos0/sin0	
$\cos \theta = -1$	sec θ =	cot $\theta =$
	1/cosθ	1/tan0
EVEN-ODD IDENTITIES:		
$sin(-\theta) = \frac{-sin(\theta)}{cos}$	$(-\theta) = \frac{\cos(\theta)}{$	$tan(-\theta) = \frac{-tan(\theta)}{-tan(\theta)}$
$csc(-\theta) = \underline{-csc(\theta)}$ sec	$(-\theta) = \underline{\operatorname{sec}(\theta)}$	$cot(-\theta) = -\cot(\theta)$
PYTHAGOREAN IDENTITIES:		
$sin^2 \theta + cos^2 \theta = $	1	

 $tan^{2} \theta + 1 = \underline{\qquad} Sec^{2} \theta$ $1 + cot^{2} \theta = \underline{\qquad} Csc^{2} \theta$

PROBLEMS

Some of the identities above can be rewritten with minor variations. Complete as appropriate:

1) $\sin^2 x = 1 - \cos^2 x$ 2) $\sec^2 x - 1 = 1 - \tan^2 x$

3) **1** - **csc**² **x** = _____ -cotan²x

Establish the identities: (meaning: prove that the statement is true by applying definitions/identities)

4) sec
$$\theta$$
 · cot θ = csc θ $\frac{1}{\cos\theta} * \frac{\cos\theta}{\sin\theta} = \frac{1}{\sin\theta} = \csc\theta$

5)
$$\sec \theta \cdot \sin \theta = \tan \theta \frac{1}{\cos \theta} * \sin \theta = \frac{\sin \theta}{\cos \theta} = \tan \theta$$

6) $\sin\theta (\cot\theta + \tan\theta) = \sec\theta \sin\theta (\frac{\cos\theta}{\sin\theta} + \frac{\sin\theta}{\cos\theta}) = \cos\theta + \frac{\sin^2\theta}{\cos\theta} = \frac{\cos^2\theta + \sin^2\theta}{\cos^2\theta} = \frac{1}{\cos\theta} = \sec\theta$

7) $\sin(-\theta) + \sin(\theta) = \mathbf{0} - \sin(\theta) + \sin(\theta) = 0$

8) $1 + \cot^2(-\theta) = \csc^2\theta$

Lots of ways to do this one. Way 1:1 + $(cot(-\theta))^2 = 1 + (-cot(\theta))^2 = 1 + cot^2(\theta) = csc^2(\theta)$ Way 2: $1 + \frac{cos^2(-\theta)}{sin^2(-\theta)} = 1 + \frac{cos^2(\theta)}{(-sin(\theta))^2} = 1 + \frac{cos^2(\theta)}{sin^2(\theta)} = \frac{sin^2(\theta) + cos^2(\theta)}{sin^2(\theta)} = \frac{(sin(\theta))^2 + (cos(\theta))^2}{(sin(\theta))^2} = \frac{1}{sin^2(\theta)} = csc^2(\theta)$ 9) $\sin\theta \csc\theta - \cos^2\theta = \sin^2\theta$ $\sin\theta * \frac{1}{sin\theta} - cos^2\theta = 1 - cos^2\theta = sin^2\theta + cos^2\theta - cos^2\theta = sin^2\theta$ 10) $(\csc\theta - 1)(\csc\theta + 1) = \cot^2\theta(\frac{1}{sin\theta} - 1)(\frac{1}{sin\theta} + 1) = \frac{1}{sin^2\theta} - 1 = \frac{1 - sin^2\theta}{sin^2\theta} = \frac{sin^2 + cos^2 - sin^2\theta}{sin^2\theta} = \frac{cos^2\theta}{sin^2\theta} = cot^2\theta$ 11) $(\csc\theta + \cot\theta)(\csc\theta - \cot\theta) = 1(\frac{1}{sin\theta} - \frac{cos\theta}{sin\theta})(\frac{1}{sin\theta} + \frac{cos\theta}{sin\theta}) = \frac{1}{sin^2\theta} - \frac{cos^2\theta}{sin^2\theta} = 1$ 12) $\frac{1 + \tan\theta}{1 + \cot\theta} = \tan\theta$ $\frac{1 + \frac{sin\theta}{cos\theta}}{sin\theta} = \frac{cos\theta + sin\theta}{cos\theta} * \frac{sin\theta}{sin\theta + cos\theta} = \frac{sin\theta(cos\theta + sin\theta)}{cos\theta(sin\theta + cos\theta)} = \frac{sin\theta(cos\theta + sin\theta)}{cos\theta(sin\theta + cos\theta)} = \frac{sin\theta}{cos\theta(sin\theta + cos\theta)} = \frac{sin\theta}{cos\theta(sin\theta + cos\theta)} = \frac{sin\theta}{cos\theta(sin\theta + cos\theta)} = \frac{sin\theta(cos\theta + sin\theta)}{cos\theta(sin\theta + cos\theta)} = \frac{sin\theta}{cos\theta(sin\theta + cos\theta)} = \frac{sin\theta(cos\theta + sin\theta)}{cos\theta(sin\theta + cos\theta)} = \frac{sin\theta}{cos\theta(sin\theta + cos\theta)} =$

tanθ

13) $\csc \theta - \cot \theta = \frac{\sin \theta}{1 + \cos \theta} \frac{1}{\sin \theta} - \frac{\cos \theta}{\sin \theta} = \frac{1 - \cos \theta}{\sin \theta} = \frac{1 - \cos \theta}{\sin \theta} * \frac{1 + \cos \theta}{1 + \cos \theta} =$		
$\frac{1-\cos^2\theta}{2} = \frac{\cos^2\theta + \sin^2\theta - \cos^2\theta}{2} = \frac{\sin^2\theta}{2} = \frac{\sin^2\theta}{2}$		
$sin\theta(1+cos\theta)$ $sin\theta(1+cos\theta)$ $sin\theta(1+cos\theta)$ $1+cos\theta$		
14) $1 - \frac{\sin^2 \theta}{1 - \cos \theta} = -\cos \theta \frac{1 - \cos \theta - \sin^2 \theta}{1 - \cos \theta} = \frac{\sin^2 \theta + \cos^2 \theta - \cos \theta - \sin^2 \theta}{1 - \cos \theta} =$		
$1 - \cos \theta$ $1 - \cos \theta$ $1 - \cos \theta$		
$\frac{-\cos\theta + \cos^2\theta}{1 - \cos\theta} = \frac{-\cos\theta(1 - \cos\theta)}{1 - \cos\theta} = -\cos\theta$		