SAS info:

Works from any angle.

 $A = \frac{1}{2}bh$

SAS

$$A = \frac{1}{2}ab\sin\gamma$$

$$A = \frac{1}{2}bc\sin\alpha$$

$$A = \frac{1}{2}ac\sin\beta$$

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$

where
$$s = \frac{1}{2}(a+b+c)$$

or

$$s = \frac{perimeter}{2}$$

SSS Heron's $\frac{1}{2}ab\sin\gamma$ SSA L.of S. to get other angle(s), then $\frac{1}{2}ab\sin\gamma$ ASA L.of S. to get another side, then $\frac{1}{2}ab\sin\gamma$ AAS L.of S. to get another side, then $\frac{1}{2}ab\sin\gamma$ Right triangle $\frac{1}{2}bh$

In Problems 1-8, find the area of each triangle. Round answers to two decimal places.

In Problems 9-24, find the area of each triangle. Round answers to two decimal places.

9
, $a = 3$, $b = 4$, $\gamma = 40^{\circ}$

10.
$$a = 2$$
, $c = 1$, $\beta = 10^{\circ}$

12.
$$a = 6$$
, $b = 4$, $\gamma = 60^{\circ}$

13.
$$a = 3$$
, $c = 2$, $\beta = 110^{\circ}$

15.
$$a = 2$$
, $b = 2$, $\gamma = 50^{\circ}$

13.
$$a = 3$$
, $c = 2$, $\beta = 110^{\circ}$

18.
$$a = 4$$
, $b = 5$, $c = 3$

16.
$$a = 3$$
, $c = 2$, $\beta = 110^{\circ}$

$$21 - 4$$
, $0 = 5$, $c = 3$

21.
$$a = 5$$
, $b = 8$, $c = 9$
24. $a = 9$, $b = 7$, $c = 10$

22.
$$a = 4$$
, $b = 3$, $c = 6$

19.
$$a = 2$$
, $b = 2$, $c = 2$

20.
$$a = 3$$
, $b = 3$, $c = 2$
23. $a = 10$, $b = 8$, $c = 5$

11. b = 1, c = 3, $\alpha = 80^{\circ}$

14. b = 4, c = 1, $\alpha = 120^{\circ}$

17. a = 12, b = 13, c = 5

Draw three interlocking circles where every circle's center is on one of the other circles:

Circle A has a radius of 10 in. Its center is on circle C.

Circle B has a radius of 9 in. Its center is on circle A.

Circle C has a radius of 8 in. Its center is on circle B.

Find the area and angles of triangle A, B, C

1	7.2	The Law of Sines	p.547-8(1,5,15,17,23,27,29,31,35,37)
2	7.3	The Law of Cosines	p.555-6(1,7,15,23,25,26,27,29)

Plus 7.3 packet

- 31. Finding the Length of a Guy Wire The height of a radio tower is 500 feet, and the ground on one side of the tower slopes upward at an angle of 10° (see the figure).
 - (a) How long should a guy wire be if it is to connect to the top of the tower and be secured at a point on the sloped side 100 feet from the base of the tower?
 - (b) How long should a second guy wire be if it is to connect to the middle of the tower and be secured at a point 100 feet from the base on the flat side?

