1) $x^{2}=259^{2}+423^{2}-2 * 259 * 423 * \cos \left(132^{\circ}\right)$
$x^{2}=392625.88368$
$x=626.5987$ meters
2) $x^{2}=12.9^{2}+15.4^{2}-2 * 12.9 * 15.4 * \cos \left(42.3^{\circ}\right)$
$x^{2}=109.6998$
$x=10.4738$ meters
3. Solve triangle $A B C$ if $a=9.5$ feet, $b=15.9$ feet, and $c=21.1$ feet. (hint: when you solve for $\langle C$ you'll be able to tell if C is obtuse by analyzing $\cos C$, i.e., if $\cos C$ so, then you'll know C is obtuse...)

$$
\begin{aligned}
& 21.1^{2}=9.5^{2}+15.9^{2}-2 * 9.5 * 15.9 * \cos (x) \\
& <C=109.76^{\circ},<\mathcal{B}=45.2^{\circ},<\mathcal{A}=25.07^{\circ} \\
& \text { 3) } \beta=102.47, \alpha=54.02, \gamma=23.51 \\
& \frac{\sin (102.47)}{x}=\frac{\sin (23.51)}{459} \\
& x=1123.4935 \mathrm{ft}
\end{aligned}
$$

4)

$90^{2}=45^{2}+60^{2}-2 * 60 * 45 * \cos (x) \quad \partial=117.2796^{\circ}$

$$
\frac{\sin (117.2796)}{90}=\frac{\sin (\beta)}{60}
$$

5) $\frac{360^{\circ} / \text { orbit }}{2^{\text {hr }} / \text { orbit }}=180$ degree $/$ hour $* \frac{1}{60} \mathrm{hr} /$ min $=3$ degree $/ \mathrm{min}$

$$
3^{\text {degree }} / \min * 3 \min =9^{\circ}
$$

$$
x^{2}=8000^{2}+6400^{2}-2 * 8000 * 6400 * \cos \left(9^{\circ}\right)
$$

$X=1,954.66 \mathrm{~km}$

$$
\text { 6) } \begin{array}{r}
x^{2}=10^{2}+10^{2}-2 * 10 * 10 * \cos \left(128^{\circ}\right) \\
x=17.9759 \mathrm{ft}
\end{array}
$$

