1) Find the area of VABC if $a=16, b=25$, and $\angle C=52^{\circ}$.

$$
\begin{gathered}
A=.5 * a * b * \sin C \\
A=.5 * 16 * 25 * \sin 52 \\
A=157.60 u^{2}
\end{gathered}
$$

2) The area of $V A B C$ is 15 . If $a=12 \mathrm{~cm}, b=5 \mathrm{~cm}$, find the measure of $\angle C$.

$$
\begin{gathered}
A=.5 * a * b * \sin C \\
15=.5 * 12 * 5 * \sin C
\end{gathered}
$$

$$
A=30^{\circ}
$$

3) Find the area of a regular 12-sided polygon inscribed in a circle of radius 8 cm .
$360^{\circ} / 12=30^{\circ}, 180^{\circ}-30^{\circ}=150^{\circ} / 2=75^{\circ}=>$ vertex $=30^{\circ}$

$$
\begin{gathered}
A=.5 * a * b * \sin C \\
A=.5 * 8 * 8 * \sin 30 \\
A=16 \mathrm{~cm}^{2} \text { for each triangle } \\
16 * 12=192 \mathrm{~cm}^{2}
\end{gathered}
$$

4) Adjacent sides of a parallelogram have lengths 6 cm and 7 cm , and the measure of the included angle is 30°. Find the area of the parallelogram.

$$
\begin{array}{r}
A=.5 * 7 * 6 * \sin 30^{\circ} \\
A=.5 * 7 * 6 * \sin 30^{\circ} \\
A=10.5 \mathrm{~cm}^{2 \star} 2=21 \mathrm{~cm}^{2}
\end{array}
$$

5) Find the area of the quadrilateral below to the nearest square unit.

$$
\begin{gathered}
A=.5 * 8 * 6 \\
A=.5 * 8 * 6 \\
A=24 \mathrm{~cm}^{2}, \text { Diagonal }=10 \\
\text { Tan }^{-1}(8 / 6)=53.1302^{\circ} \\
{\text { Triangle angles }=90^{\circ}, 53.1302^{\circ}, 36.8699^{\circ}}^{115^{\circ}-53.1302^{\circ}=61.8699^{\circ}} \\
A=.5 * 10 * 11 * \sin \left(61.8699^{\circ}\right) \\
A=48.5034 u^{2} \\
24+48.5034=72.5034 \mathrm{u}^{2}
\end{gathered}
$$

5) Find the area of a segment of a circle of radius 5 if the measure of the central angle of the segment is 2 radians.
$A=\frac{1}{2} r^{2} \cdot \theta$

$$
\begin{gathered}
A=.5 * a * b * \sin C \\
A=.5 * 5 * 5 * \sin 2 \\
\mathrm{~A}=11.3662 \mathrm{u}^{2} \\
\\
\frac{2}{2 \pi} * \boldsymbol{\pi} \mathbf{5}^{\mathbf{2}}=\mathbf{2 5} \boldsymbol{u}^{\mathbf{2}} \\
\mathbf{2 5} \mathbf{- 1 1 . 3 6 6 2}=\mathbf{1 3 . 6 3 3 8} \mathrm{u}^{2}
\end{gathered}
$$

6) Find the area of the segment formed by a chord 24 cm long in a circle of radius 13 cm .

$$
\begin{gathered}
A=\sqrt{s(s-a)(s-b)(s-c)} \\
s=\frac{(24+13+13)}{2}=25 \\
A=\sqrt{25(25-24)(25-13)(25-13)}=60 \mathrm{~cm}^{2} \\
24^{2}=13^{2}+13^{2}-2 a b \cos (x) \\
X=134.7603^{\circ} \\
\frac{134.7603}{360} * \pi 13^{2}=198.7449 \mathrm{~cm}^{2} \\
198.7449-60=138.7449 \mathrm{~cm}^{2}
\end{gathered}
$$

7) Find the area of the Bermuda Triangle, if the sides have the approximate lengths 850 miles, 925 miles, and 1300 miles.

$$
\begin{aligned}
& \quad A=\sqrt{s(s-a)(s-b)(s-c)} \\
& \quad s=\frac{(850+925+1300)}{2}=1537.5 \\
& A \\
& =\sqrt{1537.5(1537.5-850)(1537.5-925)(1537.5-1300)} \\
& =392128.824 \text { miles }^{2}
\end{aligned}
$$

8) Find the area of a triangle in a rectangular coordinate plane whose vertices are $(0,0),(3,4)$ and $(-8,6)$ using Heron's area formula.
$A(0,0)$ to $B(3,4)=5$
A to $C=10$
B to $C=5 \sqrt{5}$

$$
\begin{gathered}
A=\sqrt{s(s-a)(s-b)(s-c)} \\
s=\frac{(5 \sqrt{5}+5+10)}{2}=13.0902 \\
A=\sqrt{13.0902(13.0902-5 \sqrt{5})(13.0902-5)(13.0902-10)}=25 u^{2}
\end{gathered}
$$

