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Now can look at points using Pythagorean theorem in two ways:
- In rectangular world

Good for lots of things you have done since sixth grade
- In polar world

Handy for circles and spirograph pictures

and....

Next: Looking at points as in the complex plane.

Step 1: Plotting complex numbers in rectangular plane grid called the complex plane
In the complex plane the point (2,3) refers to a complex number.

Its real part =2 and its imaginary part =3
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Step 1: Ploting complex numbers in rectangular grid called the complex plane

In the complex plain the point (2,3) refers to a complex number.
Its real part =2 and its imaginary part =3

Imaginary axis
z=2+3i Plots as (2,3)

real axis
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But if we can look at complex numbers as points in a rectangular grid

then we can look at complex numbers as points in a polar grid

Same idea as before, the point just refers to a complex number, just plotting it on a different grid

7=2+3] Plots on a rectangular, complex plane at (2,3)

Polar directions to the same point: = /22 +32 = /13
6 =tan (%) =.9828 radians

2 = /13 cos(.9828)
3=/135in(.9828)

SO,
z =~/13(cos(.9828) +sin(.9828)i)

is a possible reformatting of 2+3i. Why do this? We will see.

Rectangular form z=2+3i  Polar form: z =+/13(cos(.9828) +sin(.9828)i)
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So any complex number can be written in polar form
and any complex number in polar form can be written in rectangular form.
(Thinking of it as a point not required, but maybe helpful)

7=-7 + 23j =>
2=24.04(cos(106.928¢)+isin(106.9280)
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The product of two complex

So any complex number can be written in polar form. triangles creates a triangle

(Thinking of it as a point not required) with a hypotenuse equal the
product of their hypotenuses

and a central angle equal to

What d is that? the sum of their angles.
at good is that”

There is certain math with complex numbers that works
really well if you use the polar form of the number.

Y ukaa

—°

2,2z, = (x1 +y11')(x2 +y2i) = XX, + X\ Vi + X, i — VY, .

2= Z(cﬁs\\f%‘r ; 5"’\(‘(0}) Cs= Q(K.OS 0Nt Smdo

5 (cos 0 +sin 911') *r, (cos 0, +sin 921')

=rr,cos0,cos 0, + rr,cos0isin0, + nr,cos0,isin G, —rr, sin 0, sin0,

=nr, (cos 0 cosf, —sinl,sin b, ) +nri (cos 0isin 0, + cos @, sin O, )

Neat
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Z,Z, = ht, ((:05((91 +l92)+iSin(91 +92))

5 ta-aerita-a)

De Moivre's Theorem And this is neat too.

z" =r"(cos(n®)+ isin(no)) /
z= 4(cos£+ isinz)
2 2

( 4z . . 47zj
w=2| coOS— +isin—
3 3

(1+\/§i)4

Convert answers to
rectangular form.
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We can use the geometry

of the plane to express
math of complex numbers.

(3.2)

S~ —

3(cos(34°)+isin(34°))

Some of this works even
better in polar form.

z=3+2i

is point can be plotted on
a complex plane to represent
a complex number

Th




What the heck would the square root of z=2+3i be?
The third root?

The complex form lets us get an answer.
De Moivre's Theorem
z"=r" (cos(n@) 1 isin(né’))
if n=1/m

Um _ Um —(0) .. (9
)z =r COSL;}-I'lbulkﬁg\ BUT

remember taking roots has not worked out to be 1 to 1.
(How many numbers square to make 47?)

Complex numbers have multiple roots. How many?
Square root produces 2 roots
Third root produces 3 roots
Ninth root produces 9 roots
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What the heck would the square root of z=2+3i be?
The third root?

To find the roots of a complex number z=x+yji,

convert it to z=r(cosB+isinB)
and the find MULTIPLE roots are found as follows:

For the nth use this formula, n times:
2" =2y cos($+2k—”)+isin(ﬂ+2k—”)

n n n n
First time:
k=0 " =4/p cos(i)ﬂ'sin(&j
n n
Next:
k1% k1%
k=1 2" =y cos(9°+2 1 ”)+isin(9"+2 1 7[)
n n n n

Keep going to n-1

The roots are all the numbers that get back to the original number when you raise them
to n.
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What the heck would the square root of z=2+3i be? . _
The third root? r=+13  6=.9828

Jn _ z/i(cos(go ) Zkﬂ)ﬂ_sm(@(, . 2kxD

n n n n

0% 7 ) *0*
2”3:313[cos('9228+2 077 +isin['9§28+2 0 ”B

3 3
k1% ) 4 %1%

A5 313 cos -9828+2 1*x +isin -9828+2 1*7
3 3 L 3 3

v _ 3 9828 2*2*z) . (9828 2%2%*p
z” =x/13| cos + +isin +
3 3 ) . 3 3

12



(6(cos1207 + isin120"))1/4

20 _, 360
4 4

6”4(cos(30" +90°k)+isin

(30
6" (cos( 0° +zs1n(
(

6" (cos(ZlO

6"* (cos( 00° ) +isin

=90

° +90° k))

30°))

)

6" (cos(120° ) +isin(120°))
)
)

(
(

+isin(210° ))

300°))
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Raise each to the power
to prove it is a root

zZ'=r" (cos(n@) + isin(nH))
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Find the complex cube roots of -8-8i

and back
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