Now can look at points using Pythagorean theorem in two ways:

- In rectangular world
 Good for lots of things you have done since sixth grade
- In polar world
 Handy for circles and spirograph pictures and....

Next: Looking at points as in the complex plane.

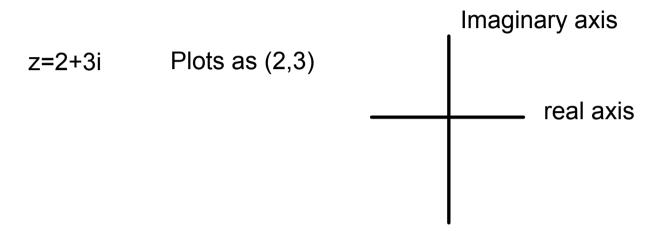
Step 1: Plotting complex numbers in rectangular plane grid called the complex plane

In the complex plane the point (2,3) refers to a complex number.

Its real part =2 and its imaginary part =3

Step 1: Ploting complex numbers in rectangular grid called the complex plane

In the complex plain the point (2,3) refers to a complex number. Its real part =2 and its imaginary part =3



But if we can look at complex numbers as points in a rectangular grid then we can look at complex numbers as points in a polar grid

Same idea as before, the point just refers to a complex number, just plotting it on a different grid

z=2+3i Plots on a rectangular, complex plane at (2,3)

Polar directions to the same point: $r = \sqrt{2^2 + 3^2} = \sqrt{13}$

$$\theta = \tan^{-1}\left(\frac{3}{2}\right) = .9828 \ radians$$

$$2 = \sqrt{13}\cos(.9828)$$

$$3 = \sqrt{13}\sin(.9828)$$

SO,

$$z = \sqrt{13} \left(\cos(.9828) + \sin(.9828) i \right)$$

is a possible reformatting of 2+3i. Why do this? We will see.

Rectangular form z=2+3i Polar form: $z = \sqrt{13} \left(\cos(.9828) + \sin(.9828)i\right)$

$$Z = -4 + 9i$$

- Write polar coordinates

red (-4, a)

- Write z in polar form

(597, 113,9625)

1=62+43

Write
$$z = 4\left(\cos\left(\frac{\pi}{3}\right) + \sin\left(\frac{\pi}{3}\right)i\right)$$
 in rectangular form.

Polar (00) A. way

 $2 + 23i$ Fect number

So any complex number can be written in polar form and any complex number in polar form can be written in rectangular form. (Thinking of it as a point not required, but maybe helpful)

$$z=-7 + 23i =>$$

 $z=24.04(cos(106.928^\circ)+isin(106.928^\circ)$

So any complex number can be written in polar form. (Thinking of it as a point not required)

The product of two complex triangles creates a triangle with a hypotenuse equal the product of their hypotenuses and a central angle equal to the sum of their angles.

What good is that?

There is certain math with complex numbers that works really well if you use the polar form of the number.

$$z_{1}z_{2} = (x_{1} + y_{1}i)(x_{2} + y_{2}i) = x_{1}x_{2} + x_{1}y_{2}i + x_{2}y_{1}i - y_{1}y_{2}$$

$$Z_{1} = Z_{1}(\cos\theta_{1} + \sin\theta_{1}i) + r_{2}(\cos\theta_{2} + \sin\theta_{2}i)$$

$$= r_{1}r_{2}\cos\theta_{1}\cos\theta_{2} + r_{1}r_{2}\cos\theta_{1}i\sin\theta_{2} + r_{1}r_{2}\cos\theta_{2}i\sin\theta_{1} - r_{1}r_{2}\sin\theta_{1}\sin\theta_{2}$$

$$= r_{1}r_{2}(\cos\theta_{1}\cos\theta_{2} - \sin\theta_{1}\sin\theta_{2}) + r_{1}r_{2}i(\cos\theta_{1}i\sin\theta_{2} + \cos\theta_{2}\sin\theta_{1})$$

$$= r_{1}r_{2}(\cos(\theta_{1} + \theta_{2}) + i\sin(\theta_{1} + \theta_{2}))$$
Neat
$$Z_{2} = G_{1}\cos\theta_{1}\cos\theta_{2} + r_{1}r_{2}\cos\theta_{2}i\sin\theta_{1} - r_{1}r_{2}\sin\theta_{1}\sin\theta_{2}$$

$$= r_{1}r_{2}(\cos\theta_{1}\cos\theta_{2} - \sin\theta_{1}\sin\theta_{2}) + r_{1}r_{2}i(\cos\theta_{1}i\sin\theta_{2} + \cos\theta_{2}\sin\theta_{1})$$
Neat
$$Z_{3} = G_{1}\cos\theta_{1}\cos\theta_{2} + r_{1}r_{2}\cos\theta_{2}\sin\theta_{1} + r_{1}r_{2}i(\cos\theta_{1}i\sin\theta_{2} + \cos\theta_{2}\sin\theta_{1})$$
Neat

$$z_{1}z_{2} = r_{1}r_{2}\left(\cos\left(\theta_{1} + \theta_{2}\right) + i\sin\left(\theta_{1} + \theta_{2}\right)\right)$$

$$\frac{z_{1}}{z_{2}} = \frac{r_{1}}{r_{2}}\left(\cos\left(\theta_{1} - \theta_{2}\right) + i\sin\left(\theta_{1} - \theta_{2}\right)\right)$$

$$De\ Moivre's \quad Theorem$$

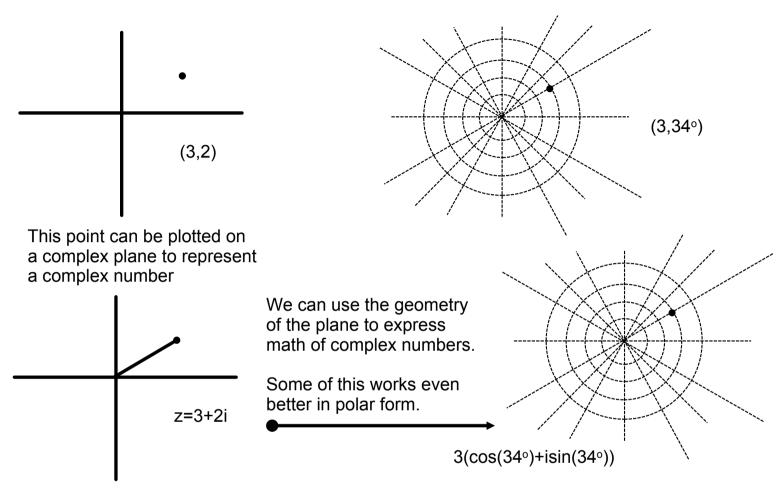
$$z^{n} = r^{n}\left(\cos\left(n\theta\right) + i\sin\left(n\theta\right)\right)$$

$$z = 4\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$$

$$w = 2\left(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}\right)$$

$$(1 + \sqrt{3}i)^{4}$$

Convert answers to rectangular form.



What the heck would the square root of z=2+3i be? The third root?

The complex form lets us get an answer.

De Moivre's Theorem

$$z^{n} = r^{n} \left(\cos(n\theta) + i \sin(n\theta) \right)$$

$$if \quad n = 1/m$$

$$z^{1/m} = r^{1/m} \left(\cos\left(\frac{\theta}{m}\right) + i \sin\left(\frac{\theta}{m}\right) \right)$$
BUT

remember taking roots has not worked out to be 1 to 1. (How many numbers square to make 4?)

Complex numbers have multiple roots. How many? Square root produces 2 roots Third root produces 3 roots Ninth root produces 9 roots What the heck would the square root of z=2+3i be? The third root?

To find the roots of a complex number z=x+yi, convert it to $z=r(\cos\theta+i\sin\theta)$ and the find MULTIPLE roots are found as follows:

For the nth use this formula, n times:

$$z^{1/n} = \sqrt[n]{r} \left(\cos \left(\frac{\theta_0}{n} + \frac{2k\pi}{n} \right) + i \sin \left(\frac{\theta_0}{n} + \frac{2k\pi}{n} \right) \right)$$

First time:

k=0
$$z^{1/n} = \sqrt[n]{r} \left(\cos \left(\frac{\theta_0}{n} \right) + i \sin \left(\frac{\theta_0}{n} \right) \right)$$

Next:

$$k=1 z^{1/n} = \sqrt[n]{r} \left(\cos \left(\frac{\theta_0}{n} + \frac{2*1*\pi}{n} \right) + i \sin \left(\frac{\theta_0}{n} + \frac{2*1*\pi}{n} \right) \right)$$

Keep going to n-1

The roots are all the numbers that get back to the original number when you raise them to n.

What the heck would the square root of z=2+3i be? The third root?

$$r = \sqrt{13} \qquad \theta = .9828$$

$$z^{1/n} = \sqrt[n]{r} \left(\cos\left(\frac{\theta_0}{n} + \frac{2k\pi}{n}\right) + i\sin\left(\frac{\theta_0}{n} + \frac{2k\pi}{n}\right) \right)$$

$$z^{1/3} = \sqrt[3]{13} \left(\cos\left(\frac{.9828}{3} + \frac{2*0*\pi}{3}\right) + i\sin\left(\frac{.9828}{3} + \frac{2*0*\pi}{3}\right) \right)$$

$$z^{1/3} = \sqrt[3]{13} \left(\cos\left(\frac{.9828}{3} + \frac{2*1*\pi}{3}\right) + i\sin\left(\frac{.9828}{3} + \frac{2*1*\pi}{3}\right) \right)$$

$$z^{1/3} = \sqrt[3]{13} \left(\cos\left(\frac{.9828}{3} + \frac{2*2*\pi}{3}\right) + i\sin\left(\frac{.9828}{3} + \frac{2*2*\pi}{3}\right) \right)$$

Find the complex cube roots of -8-8i

and back