Appendix A

AP BIOLOGY EQUATIONS AND FORMULAS

Mean					
$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$					
Chi-Square					
$\chi^2 = \sum \frac{(o-e)^2}{e}$					
CHI-SQUARE TABLE					
Degrees of Freedom					
4 5 6 7 8 -					
9.49 11.07 12.59 14.07 15.51					
4 13.28 15.09 16.81 18.48 20.09					

s = sample standard deviation (i.e., the sample based estimate of the standard deviation of the population)

 \bar{x} = mean

n =size of the sample

o = observed individuals with observed genotype

e = expected individuals with observed genotype

Degrees of freedom equals the number of distinct possible outcomes minus one.

LAWS OF PROBABILITY

If A and B are mutually exclusive, then P (A or B) = P(A) + P(B)If A and B are independent, then $P (A \text{ and } B) = P(A) \times P(B)$

HARDY-WEINBERG EQUATIONS

 $b^2 + 2pa + a^2 = 1$

p =frequency of the dominant

allele in a population

p + q = 1

q = frequency of the recessive allele in a population

METRIC PREFIXES			
Factor	Prefix	Symbol	
10 ⁹	giga	G	
10 ⁶	mega	М	
10³	kilo	k .	
10 ⁻²	centi	С	
10 ⁻³	milli	m	
10-6	micro	μ	
10 ⁻⁹	nano	n	
10 ⁻¹²	pico	р	

Mode = value that occurs most frequently in a data set

Median = middle value that separates the greater and lesser halves of a data set

Mean = sum of all data points divided by number of data points

Range = value obtained by subtracting the smallest observation (sample minimum) from the greatest (sample maximum)

RATE ANI	O GROWTH	Water Potential (Ψ)
Rate	dY= amount of change	$\Psi = \Psi p + \Psi s$
dY/dt	t = time	Ψp = pressure potential
Population Growth	B = birth rate	Ψs = solute potential
dN/dt=B-D	D = death rate	The water potential will be equal to the
Exponential Growth	N = population size	solute potential of a solution in an open
$\frac{dN}{dt} = r_{\text{max}}N$	K = carrying capacity	container, since the pressure potential
	r_{max} = maximum per capita growth rate	of the solution in an open container is
Logistic Growth	of population	zero.
$\frac{dN}{dt} = r_{\text{max}} N \left(\frac{K - N}{K} \right)$		The Solute Potential of the Solution
		Ψs = - iCRT
Temperature Coefficient Q ₁₀	t_2 = higher temperature	i = ionization constant (For sucrose this is 1.0 because sucrose does not
$(k_2)^{\frac{10}{l_2-l_1}}$	$t_{\rm I}$ = lower temperature	ionize in water.)
$Q_{10} = \left(\frac{k_2}{k_1}\right)^{\frac{10}{r_2 - l_1}}$	k_2 = metabolic rate at t_2	C = molar concentration
Primary Productivity Calculation	k_1 = metabolic rate at t_1	R = pressure constant (R = 0.0831 liter
$mg O_2/L \times 0.698 = mL O_2/L$	Q ₁₀ = the <i>factor</i> by which the reaction rate increases when the	bars/mole K)
mL O ₂ /L x 0.536 = mg carbon fixed/L	temperature is raised by ten	T = temperature in Kelvin (273 + °C)
3	degrees	,
SURFACE AREA	Dilution – used to create a dilute	
Volume of a Sphere	r = radius	solution from a concentrated stock
$V = 4/3 \pi r^3$	I = length	solution
Volume of a Cube (or Square Column)	h = height	$C_i V_i = C_i V_f$
V = l w h	w = width	i = initial (starting)
Volume of a Column	A = surface area	C = concentration of solute
$V = \pi r^2 h$	V = volume	f = final (desired)
Surface Area of a Sphere	$\Sigma = Sum \text{ of all }$	V = volume of solution
$A = 4 \pi r^2$	a = surface area of one side of the cube	Gibbs Free Energy
Surface Area of a Cube	·	$\Delta G = \Delta H - T \Delta S$
A = 6 a		ΔG = change in Gibbs free energy
Surface Area of a Rectangular Solid		ΔS = change in entropy
$A = \Sigma$ (surface area of each side)	·	ΔH = change in enthalpy
		<i>T</i> = absolute temperature (in Kelvin)
		pH = – log [H+]