FAIRFIELD HIGH SCHOOL DEPT. OF MATHEMATICS PRECALCULUS – FINAL EXAM REVIEW

- 1. Solve for x: $2\sin x + 1 = 0$ for $0 \le x \le 2\pi$.
- 2. The revenue function for a given commodity is $r(x) = 150x .2x^2$. Find the value of x that will maximize the revenue.
- 3. The terminal side of an angle passes through the point (8,-15). Find the cosine of this angle.
- The equation for a harmonic motion is given by: $d(t) = 9 \sin 4t$. What is the amplitude, and frequency in oscillation per second?
- 5. Given: f(x) = ln(x). This curve is subjected to three transformations. The curve is shifted up 5 units, horizontally 2 to the right, and then stretched vertically by a factor of 9. What is the equation of this new graph?
- 6. Find the domain for the following function: $f(x) = \log_4(\sqrt{2x+6})$.
- 7. Given the following function: $f(x) = (\frac{x+2}{5})^3 7$. Find $f^{-1}(x)$.
- 8. A rectangle is inscribed in the parabola whose equation is: $y = 21 x^2$ with the base of the rectangle on the x-axis. Répresent the area of this rectangle as a function of x.
- 9. The graph of a particular relation is symmetric with the x-axis. If (-7,9) is on the graph of this relation, what is the image point of the given point?
- 10. Determine "end behavior" of the following function: $f(x) = -x^3(x^2 + 1)(x + 8)$.
- 11. Graph the following polar function: $r(\theta) = 4(1 \cos \theta)$.
- Using the following parametric equations: $x = t^3 5$ and y = 9 + t, eliminate the parameter t, and write the rectangular equation relating x and y.
- 13. Write a cubic equation, with real coefficients, having zeros of 2i and -4.
- 14. In triangle PQR, p=12, q=16, and $R=30^{\circ}$. Find the area of the triangle.

- 15. Given the following function: $f(x) = 6\cos(4x \frac{\pi}{3})$. Determine the amplitude, frequency, period, and phase shift for this function.
- 16. In triangle KMT, $K=72^{\circ}$, m=19.4, and t=26.3, find the value of k
- 17. In triangle DEF, $D=39^{\circ}$, $E=47^{\circ}$, and e=112, find the value of d.
- 18. If $f(x) = 3x^4 + 2x^2 10x + 5$ is divided by x+2, find the quotient and remainder.
- 19. For the following function: $f(x) = 2x^3 24x + 10$, find the coordinates of all the local maxima and minima.
- 20. Solve the following inequality: $\frac{x+9}{x-3} \ge 0$.
- 21. Interest is compounded continuously at a rate of 3.7% a year. How long will it take to double the money invested?
- 22. Solve: $|x+5| \le 12$.
- 23. Solve for x: $4x^2 \ge 21x + 18$.

$$\checkmark$$
. Simplify: $e^{3\ln R}$.

- 25. A radioactive element has a half-life of 5 days, where the decay equation is: $y = y_0 e^{-kt}$. Find the value of k
- 26. Given the following exponential equation: 5000 = 3000(1.045)'. Convert this to a logarithmic equation.
- 27. Solve for t: $\sqrt[3]{16} = 2^t$.
- 28. Solve for x: $\log_5(.04) = x$
- 29. Find the equation of the oblique asymptote for the following rational function: $f(x) = \frac{2x^2 4x + 3}{x 5}$.
- 30. Solve for x: $\log_x(\frac{1}{32}) = -5$

Find
$$\lim_{x \longrightarrow \infty} \frac{3x^2 + 9x - 1}{x^2 + 6}$$

- 32. Solve for x: $2^{2x-1} = 128$
- Given the following function: $f(x) \frac{2x^2 + 3x 1}{x^2 2x 35}$.
- 34. List all the possible rational zeros of: $f(x) = 3x^4 9x^2 + 2x 10$.
- 35. An investment of \$7000 is made at a bank paying 4.25%/yr compounded monthly. If this is left untouched for 6 years, how much is this investment now worth?
- 36. Given the following function: $f(x) = 5(\frac{x-2}{7})^3 + 6$. Find $f^{-1}(x)$.
- 37. Graph the following "piecewise" function:

$$f(x) = \ln(x-2) \text{ for } x > 3$$
$$f(x) = x^2 - 9 \text{ for } x \le 3$$

- 38. If ln5=p and ln3=q, express $log_3 5$ in terms of p and q.
- 39. Given the following data set:

By graphing; show that $f(t) = 20 + 10te^{-\frac{t}{3}}$ is a good "fit."

- Find the fifth term in the expansion of: $(k^3 4m^2)^7$.
- 41. If $\sin \theta \ge 0$ and $\tan \theta < 0$, determine the quadrant of angle θ .
- 42. An airplane has an airspeed of 600 mph in a northeasterly direction. A wind of 70 mph is directed due south. Find the groundspeed and direction of the plane.

- 43. A rumor is spreading according to the following equation: $y = \frac{e^{2t}}{e^{2t} + 9}$ where y is the percent of people who have heard the rumor. What % of the population knows this rumor at time t=0? What % after 10 days? How long before ½ the population knows this rumor?
- Use the parametric equations for projectile motion with $v_0 = 70$, $h_0 = 4$, and $\theta = 30^\circ$. When will the ball land? How far down range will it land? What will be the maximum height of the ball?
- Using the method of partial fractions decompose: $\frac{-x-31}{x^2-3x-40}$.
- 46. If $\tan \theta = 2.5$ and $\cos \theta < 0$, find all 6 trig functions of θ .
- 47. Find all real zeros of the given function: $f(x) = 1.1x^5 - 1.73x^4 - 17.2x^3 + 30.9x - 9.1$.
- 48. Evaluate: *i*⁸².
- 1. If $\sin x = \frac{3}{5}$ in Quadrant I, and $\cos y = \frac{5}{12}$ in Quadrant II, find $\tan(x+y)$.
- 50. Find the exact value of $sec(Tan^{-1}(\frac{7}{4}))$.
- 51. Solve, correct to two decimal places: $\sin x = e^{-x}$, $0 \le x \le 2\pi$.
- 52. Solve: $2 x^3 = \tan x$, where 0 < x < 1.
- Given these parametric equations: x=5sint and y=4cost, find the rectangular equation for this set of parametrics.
- 54 Given the following equation: $x^2 = 2^x$. This equation has 3 solutions. Find all of them.
- 55. The angle of depression from the top a hill to a point 113 feet from the base of the hill is 52°. Find the height of the hill.
- 56. Solve the following equation: $7^x = 200$.
- 57. Determine the following product: (4+3i)(5-2i).

Precalculus Exam Review Answers

NOTE: Skip #31, #33 "Find the asymptotes.", #49 $\cos y = -\frac{5}{13}$

1.
$$\pi/_6$$
, $11\pi/_6$

3.
$$\frac{8}{17}$$

4. amp = 9, freq =
$$\frac{2}{\pi}$$

5.
$$f(x) = 9\ln(x-2) + 5$$

6.
$$x > -3$$

7.
$$f^{-1}(x) = 5\sqrt[3]{x+7} - 2$$

9.
$$(-7, -9)$$

10. as
$$x \to -\infty$$
, $y \to -\infty$

as
$$x \to \infty$$
, $y \to -\infty$

11.

12.
$$x = (y-9)^3 - 5$$

13.
$$x^3 + 4x^2 + 4x + 16 = y$$

15. amp = 6, per =
$$\frac{\pi}{2}$$
, p.s. = $\frac{\pi}{12}$ right

18. Q:
$$3x^3 - 6x^2 + 14x - 38$$
 R: 81

20.
$$(-\infty, -9] \cup (3, \infty)$$

22.
$$-17 \le x \le 7$$

23.
$$\left(-\infty, -\frac{3}{4}\right] \cup \left[6, \infty\right)$$

24.
$$R^3$$

$$26. \log 5000 = \log 3000 + t \log 1.045$$

27.
$$t = \frac{4}{3}$$
 8. $A(x) = 2x(21-x^2)$

29.
$$y = 2x + 6$$

$$30. x = 2$$

32.
$$x = 4$$

33. Vertical asymptote:
$$x = -5$$
, $x = 7$

Horizontal asymptote: y = 2

34
$$\{\pm 1, \pm 2, \pm 5, \pm 10, \pm \frac{1}{5}, \pm \frac{2}{3}, \pm \frac{5}{3}, \pm \frac{10}{3}\}$$

35, \$9029.16

36.
$$y = 7\sqrt[3]{\frac{1}{3}(x-6)} + 2$$

37.

38.
$$\frac{p}{q}$$

42. speed =
$$552.723$$
 mph, 39.862° N of E

43.
$$t = 0$$
, 10%; $t = 10$, 100%; $t = 1.098$, 50%

45.
$$\frac{-3}{x-8} + \frac{2}{x+5}$$

46.
$$\cot \theta = \frac{2}{5}$$
, $\sin \theta = \frac{-5}{\sqrt{29}}$, $\cos \theta = \frac{-2}{\sqrt{29}}$

$$\csc\theta = \frac{-\sqrt{29}}{5}$$
, $\sec\theta = \frac{-\sqrt{29}}{2}$

$$49. -33/56$$

50.
$$\sqrt{65}/4$$

$$53. \ \frac{x^2}{25} + \frac{y^2}{16} = 1$$

$$57.26 + 7i$$

Precalculus Exam Review Answers

NOTE: Skip #31, #33 "Find the asymptotes.", #49 $\cos y = -5/13$

1.
$$\pi/6$$
, $11\pi/6$

4. amp = 9, freq =
$$\frac{2}{\pi}$$

5.
$$f(x) = 9\ln(x-2)+5$$

6.
$$x > -3$$

7.
$$f^{-1}(x) = 5\sqrt[3]{x+7} - 2$$

9.
$$(-7, -9)$$

10. as
$$x \to -\infty$$
, $y \to -\infty$

as
$$x \to \infty$$
, $y \to -\infty$

11.

12.
$$x = (y-9)^3 - 5$$

13.
$$x^3 + 4x^2 + 4x + 16 = y$$

15. amp = 6, per =
$$\frac{\pi}{2}$$
, p.s. = $\frac{\pi}{12}$ right

18. Q:
$$3x^3 - 6x^2 + 14x - 38$$
 R: 81

19. max:
$$(-2,42)$$
 min: $(2,-22)$

20.
$$(-\infty, -9] \cup (3, \infty)$$

22.
$$-17 \le x \le 7$$

23.
$$\left(-\infty, -\frac{3}{4}\right] \cup [6, \infty)$$

24.
$$R^3$$

$$26. \log 5000 = \log 3000 + t \log 1.045$$

27.
$$t = \frac{4}{3}$$
 8. $A(x) = 2x(21-x^2)$

29.
$$y = 2x + 6$$

30.
$$x = 2$$

32.
$$x = 4$$

33. Vertical asymptote:
$$x = -5$$
, $x = 7$

Horizontal asymptote: y = 2

34.
$$\{\pm 1, \pm 2, \pm 5, \pm 10, \pm \frac{1}{5}, \pm \frac{2}{3}, \pm \frac{5}{3}, \pm \frac{10}{3}\}$$

36.
$$y = 7\sqrt[3]{\frac{1}{3}(x-6)} + 2$$

37.

38.
$$\frac{p}{q}$$

42. speed =
$$552.723$$
 mph, 39.862° N of E

43.
$$t = 0$$
, 10%; $t = 10$, 100%; $t = 1.098$, 50%

44. land @
$$t = 2.296$$
, dist = 139.210, max = 23.141

45.
$$\frac{-3}{x-8} + \frac{2}{x+5}$$

46.
$$\cot \theta = \frac{2}{5}$$
, $\sin \theta = \frac{-5}{\sqrt{29}}$, $\cos \theta = \frac{-2}{\sqrt{29}}$

$$\csc\theta = \frac{-\sqrt{29}}{5}$$
, $\sec\theta = \frac{-\sqrt{29}}{2}$

$$49. -33/56$$

$$50. \sqrt{65} / 4$$

$$53. \ \frac{x^2}{25} + \frac{y^2}{16} = 1$$

$$57.26 + 7i$$