- 1) Solve each rational inequality. Shown work must:
 - Justify the borders/critical values that will determine the intervals to be tested.
 - Identify the values used to test the x intervals
 - Indicate the calculations and results that verify the conclusion for each interval.
 - Clearly states the solution

a)
$$12x^2+12x>144 \Rightarrow 12x^2+12x-144 \neq 0$$

 $12x^2+12x-144=12(x^2+x-12)=12(x+4)(x-3)$

Borders: Zeros - X=-4,x=3

Test:-5,0,4 $f(-5)=96 \Rightarrow true. \ f(0)=-144 \Rightarrow not true. \ f(4)=96 \Rightarrow true$

Solution: $\{x \mid x < -4 \text{ or } 3 < x\}$

Objectives:

- Learn proper terminology for elements of polynomial division
- Learn a theorem that gives a new way to calculate f(#)

When we divide, life is easy if the divisor goes into the dividend nicely. But remainders happen.

Lets look at division a relationship of $\underline{4}$ quantities.

Different ways to express the same relationship:

Dividend Divisor
$$\frac{13}{3} = \frac{4*3+1}{3} = 4 + \frac{1}{3}$$
OR Quotient
$$\frac{13}{3} = 4 + \frac{1}{3}$$
or
$$13 = 4*3+1 \longrightarrow \text{Remainder}$$
Dividend Represent dividing 21 and 4 in this way

When we divide, life is easy if the divisor goes into the dividend nicely. But remainders happen.

Lets look at division a relationship of $\underline{4}$ quantities.

If we were as familiar with polynomials as we are integers, we could see rational functions in this way:

$$\frac{3x^2 - 8x}{x - 2} = \frac{3x^2 - 6x - 2x}{x - 2} = \frac{3x(x - 2) \in 2x}{x - 2}$$

$$3x - \frac{2x}{x - 2}$$

$$3x - \frac{2x}{x - 2}$$
OR (rewrite this one)
$$\frac{f(x)}{g(x)} = q(x) + \frac{r(x)}{g(x)} \text{ or } f(x) = q(x)g(x) + r(x)$$

$$\text{dividend quotient divisor remainder}$$

$$\frac{3x^2 - 8x}{x - 2} = 3x - \frac{2x}{x - 2}$$

$$3x^2 - 8x = 3x(x - 2) - 2x$$

What is the remainder?

Division Algorithm for Polynomials

If f(x) and g(x) denote polynomial functions and if g(x) is not the zero polynomial, then there are unique polynomial functions q(x) and r(x) such that

$$\frac{f(x)}{g(x)} = q(x) + \frac{r(x)}{g(x)} \quad \text{or} \quad f(x) = q(x)g(x) + r(x) \quad (1)$$

$$\uparrow \quad \uparrow \quad \uparrow \quad \uparrow$$

$$\text{dividend quotient divisor remainder}$$

where r(x) is either the zero polynomial or a polynomial of degree less than that of g(x).

$$\frac{f(x)}{g(x)} = q(x) + \frac{r(x)}{g(x)} \quad \text{or} \quad f(x) = q(x)g(x) + r(x)$$

$$\uparrow \quad \uparrow \quad \uparrow$$

$$\uparrow \quad \uparrow$$

$$\downarrow \text{dividend quotient divisor remainder}$$

What is f(3)?
$$\frac{4x^2 - 12x}{x - 3} = \frac{4x(x - 3)}{x - 3} = 4x$$

So, if c is a zero of
$$f(x)$$
, then $f(c) = 0$. Well, yeah. If c is a zero, then $(x-c)$ is a factor of $f(x)$. Well, yeah. If c is a zero, then dividing by $(x-c)$ has no remainder.

 $4x^2 - 12x = 4x(x-3)$

What if c is not a zero?

If
$$f(x)=4x^2-12x+4$$

Go ahead.

What is f(3)?
$$4x^2 - 12x + 4 = 4x + \frac{4}{x - 3}$$

$$4x^2 - 12x + 4 = 4x(x-3) + 4$$

What??????

- Divide by (x-#)
- Take the remainder

If
$$f(x)=4x^2-12x+4$$

What is f(5)?

Divide and discover:

$$f(x) = 4x^2 - 12x + 4 + (4x + 8)(x - 5) + 44$$

8x + 4

$$8x - 40$$

So, when we plug 5 in on the right:

$$f(x) = 4(5)^2 - 12(5) + 4 = (28)(0) + 44$$

We can either plug 5 in or divide to get the answer

If I ask you, "What is f(#)?", then one way to find out is to:

- Divide by (x-#)
- Take the remainder

Objective

- Learn rules to help find zeros
- Gain skill at using rules and synthetic division to quickly find zeros.

A) A biconditional:

- 1) If f(c)=0, then x-c is a factor of f(x)
- 2) If x-c is a factor of f(x) then f(c) = 0

Use: If you find a zero, can be divided out to create a simpler polynomial for further study.

- B) The degree of the polynomials tells you the maximum number of real zeros. Use: You know when to stop.
- C) IF A POLYNOMIAL FUNCTION HAS INTEGER COEFFICENTS then make two lists:
 - 1) factor the constant (call these p's)
 - 2) factor the leading coefficient (call these q's)
 - 3) make all the +/- fractions you can putting the p's/q's

ALL YOU REAL RATIONAL ZEROS ARE IN THIS LIST.

Use: It gives you all the possibilities.

- A useful list
- A guide on window size
- D) IF THE LEADING COEFFICIENT OF A POLYNOMIAL IS 1

then all the zeros are between

-M to +M where M is

The smaller of

o The sum of the absolute value of the coefficients and

o 1 + the coefficient with the biggest absolute value

Use: You know how big a window to set on the calculator.

- E) End behavior and turning points are still useful.
- F) Intermediate value theorem to find irrationals.

What are the zeros of:

$$x^2+1$$
?

$$x^3+3x^2+4x+12$$
?