Midtern	Review
In the origin	reven

		Midtlem	Keview
l.	Find the equation whose graph is symmetric with r	espect to the the origin.	
	[A] $5x^2 + 2y^2 = 10$ [B] $y = x^3 - 20$	[C] $y^3 = 5x^4 - 2$ [D] x	
			[1]
2.	Find an equation of a circle in standard form wher diameter.	e $C(-2, -1)$ and $D(10, 5)$ are en	adpoints of a
		[2]	
3.	Find the center and radius of $x^2 + y^2 + 6x + 10y + 6x + 10y + $	-25 = 0.	[3]
		[B] center $(-3, -5)$; $r = 3$	
	[C] center $(-3, -5)$; $r = 9$	[D] center $(3, 5)$; $r = 3$	
4.	For the data given, use a graphing utility to find the	ne equation of the line of best fit.	
	x 1 2 6 7 9 y 4 3 4 6 8		
		[4]	2
5	Use a graphing utility to approximate the solution	· · · · · · · · · · · · · · · · · · ·	
ř	$x^3 + 3.5x^2 - 11.42x - 25.35 = 0$		
		[5]	0
6.	Solve by using the quadratic formula: $x^2 - 3x + 1$	= 0	[6]
	[A] $\frac{3+\sqrt{13}}{2}$, $\frac{3-\sqrt{13}}{2}$	[B] $\frac{3+\sqrt{5}}{2}$, $\frac{3-\sqrt{5}}{2}$	
	[C] $\frac{-3 + \sqrt{5}}{2}$, $\frac{-3 - \sqrt{5}}{2}$	[D] $\frac{-3 + \sqrt{13}}{2}$, $\frac{-3 - \sqrt{13}}{2}$	
7	Arlene purchased some municipal bonds yielding 12% annually. If Arlene's investment amounts to money is invested in bonds and how much is invested.	\$17,000 and the annual income is	es of deposit yielding \$\$1980, how much
	[A] \$3500 in bonds; \$13,500 in certificates of de		700
	[B] \$13,500 in bonds; \$3500 in certificates of de		
	[C] \$3000 in bonds; \$14,000 in certificates of de		
	[D] \$14,000 in bonds; \$3000 in certificates of d	eposit	
			[7]

8. How many gallons of a 50% salt solution must be raixed with 30 gallons of a 15% solution to obtain a solution that is 40% salt?

_	Manuel can paint a fence in 12 h and Cynthia can paint the same fence in 13 h. How long will they take
9.	Manuel can paint a fence in 12 h and Cynthia can paint the same fence in 13 h. How long will they take
	to paint the fence if they work together?
	to paint the tence it they work together?

- [B] $12\frac{1}{2}$ h
- [C] $6\frac{6}{25}$ h
- [D] $6\frac{1}{4}$ h

[9]

10. Solve
$$|x-9| \le 4$$

- [A] {9}

- [B] No solution [C] $\{x \mid 5 \le x \le 13\}$ [D] $\{x \mid x \le 5 \text{ or } x \ge 13\}$

[10]

11. Determine the domain of the function $h(x) = \frac{9x}{x(x^2 - 4)}$.

[11]

12. Find the domain and range for the function graphed below.

- [A] $D = \{x | x \text{ is a real number}\}$
 - $R = \{y | y \text{ is a real number}\}\$
- [C] $D = \{x | x \text{ is a real number}\}$ $R = \{y | y \ge 2\}$

- [B] $D = \{x | x \le 2\}$
 - $R = \{y | y \text{ is a real number}\}$
- [D] $D = \{x | x > 2\}$
 - $R = \{y|y > 2\}$

[12]

13. Find the average rate of change of f between 1 and x, $\frac{f(x) - f(1)}{x - 1}$, $x \ne 1$. Be sure to simplify.

 $f(x) = \sqrt{x}$

[13]

14. Determine where $f(x) = 12x^3 + 12x^2 - 12x + 7$ has any local maximum or local minimum values and the intervals where the function is increasing, decreasing, and constant.

use interval

[14]

15. Which of the following functions is even?

[A]
$$f(x) = -6x^4 - 6x^2 + 9$$

[B]
$$h(x) = -5x^5 - 6x^3$$

[C]
$$F(x) = \frac{-6x^3}{-6x^2 - 5}$$

[D]
$$g(x) = |-6x+2| - 6$$

16. Which of the following functions is odd?

[A]
$$h(x) = 2x^3 - 6x$$

[B]
$$F(x) = |2x+1| - 2$$

[C]
$$g(x) = 2x^4 - 6x$$

[A]
$$h(x) = 2x^3 - 6x$$
 [B] $F(x) = |2x+1| - 2$ [C] $g(x) = 2x^4 - 6x^2$ [D] $f(x) = -3x^4 - 6x^2$

[16]

17. Is the following function an even function, an odd function, or neither?

$$f(x) = -2x^3 + 2x + 2$$

18. Graph the piecewise defined function: $f(x) = \begin{cases} -x-2 & \text{if } x < -3 \\ 2x+7 & \text{if } x \ge -3 \end{cases}$

19. The graph of which function y_2 below is the reflection of the graph of $y_1 = x^4 + x$ across the y-axis?

[A]
$$y_2 = -(x^4 + x)$$
 [B] $y_2 = -(x^4 - x)$ [C] $y_2 = -x^4 + x$ [D] $y_2 = x^4 - x$

[B]
$$y_2 = -(x^4 - x)$$

[C]
$$y_2 = -x^4 + x$$

[18]

[D]
$$y_2 = x^4 - x$$

[19]

20. The graph of which function y_2 below is the reflection of the graph of $y_1 = x + 1$ across the x-axis?

[A]
$$y_2 = -x + 1$$

[B]
$$y_2 = x - 1$$

[C]
$$y_2 = -(x+1)$$

[A]
$$y_2 = -x+1$$
 [B] $y_2 = x-1$ [C] $y_2 = -(x+1)$ [D] $y_2 = -(-x-1)$

[20]

- 21. Given $f(x) = \frac{x-4}{x}$ and $g(x) = x^2 7$, find $(g \circ f)(-1)$.
 - [A] $\frac{5}{3}$

[B] 18

[D]
$$-\frac{174}{25}$$

22.	If $f(x) = x^2$ and $g(x) = 3 + 4x$, find $(g \circ f)(x)$ and find the domain of $(g \circ f)(x)$.		
	3+4x2 [22]		
23.	Let $P = (x, y)$ be a point on the graph of $y = x + 3$. Express the distance d from P to the point $(3, -2)$ as a function of x.		
	[A] $d = x^2 + 18$ [B] $d = \sqrt{2x^2 + 4x + 34}$ [C] $d = 2x^2 + 4x + 34$ [D] $d = \sqrt{x^2 + 18}$		
	[23]		
24.	The price p and x , the quantity of a certain product sold, obey the demand equation $p = -\frac{1}{3}x + 100$, $0 \le x \le 300$. a. Express the revenue R as a function of x . b. What is the revenue if 100 units are sold? c. Graph the revenue function using a graphing utility. d. What quantity x maximizes revenue? What is the maximum revenue? e. What price should the company charge to maximize revenue?		
	[24]		
25.	A farmer has available 2944 feet of fencing and wishes to enclose a rectangular area. If x represents the width of the rectangle, for what value of x is the area largest?		
	[A] 737 feet [B] 734.5 feet [C] 735 feet [D] 736 feet		
	[25]		
26.	Show that f and g are inverse functions or state that they are not. $f(x) = \sqrt{6x - 7}; g(x) = \frac{x^2 + 7}{6}$		
	$f(x) = \sqrt{6x - 7}; g(x) = \frac{x^2 + 7}{6}$ [26]		
	$f(x) = \sqrt{6x - 7}; g(x) = \frac{x^2 + 7}{6}$ [26] Determine the equation for the inverse function of $y = (x - 6)^3 + 5$.		
	$f(x) = \sqrt{6x - 7}; g(x) = \frac{x^2 + 7}{6}$ [26]		
	$f(x) = \sqrt{6x - 7}; g(x) = \frac{x^2 + 7}{6}$ [26] Determine the equation for the inverse function of $y = (x - 6)^3 + 5$.		
27.	$f(x) = \sqrt{6x - 7}; g(x) = \frac{x^2 + 7}{6}$ [26] Determine the equation for the inverse function of $y = (x - 6)^3 + 5$. [A] $y = \sqrt[3]{x - 5} + 6$ [B] $y = \sqrt[3]{x - 11}$ [C] $y = \sqrt[3]{x + 6} - 5$ [D] $y = \sqrt[3]{x} + 1$		
27.	$f(x) = \sqrt{6x - 7}; g(x) = \frac{x^2 + 7}{6}$ [26] Determine the equation for the inverse function of $y = (x - 6)^3 + 5$. [A] $y = \sqrt[3]{x - 5} + 6$ [B] $y = \sqrt[3]{x - 11}$ [C] $y = \sqrt[3]{x + 6} - 5$ [D] $y = \sqrt[3]{x} + 1$ [27] For a circle of radius 4 feet, find the arc length s subtended by a central angle of 60°. Round to the		
27. 28.	$f(x) = \sqrt{6x - 7}; g(x) = \frac{x^2 + 7}{6}$ [26] Determine the equation for the inverse function of $y = (x - 6)^3 + 5$. [A] $y = \sqrt[3]{x - 5} + 6$ [B] $y = \sqrt[3]{x - 11}$ [C] $y = \sqrt[3]{x + 6} - 5$ [D] $y = \sqrt[3]{x} + 1$ [27] For a circle of radius 4 feet, find the arc length s subtended by a central angle of 60° . Round to the nearest hundredth.		
27. 28.	$f(x) = \sqrt{6x - 7}; g(x) = \frac{x^2 + 7}{6}$ [26] Determine the equation for the inverse function of $y = (x - 6)^3 + 5$. [A] $y = \sqrt[3]{x - 5} + 6$ [B] $y = \sqrt[3]{x - 11}$ [C] $y = \sqrt[3]{x + 6} - 5$ [D] $y = \sqrt[3]{x} + 1$ [27] For a circle of radius 4 feet, find the arc length s subtended by a central angle of 60° . Round to the nearest hundredth.		
27. 28.	Determine the equation for the inverse function of $y = (x - 6)^3 + 5$. [A] $y = \sqrt[3]{x-5} + 6$ [B] $y = \sqrt[3]{x-11}$ [C] $y = \sqrt[3]{x+6} - 5$ [D] $y = \sqrt[3]{x} + 1$ [27] For a circle of radius 4 feet, find the arc length s subtended by a central angle of 60°. Round to the nearest hundredth.		
27. 28. 29.	Determine the equation for the inverse function of $y = (x - 6)^3 + 5$. [A] $y = \sqrt[3]{x-5} + 6$ [B] $y = \sqrt[3]{x-11}$ [C] $y = \sqrt[3]{x+6} - 5$ [D] $y = \sqrt[3]{x} + 1$ [27] For a circle of radius 4 feet, find the arc length s subtended by a central angle of 60°. Round to the nearest hundredth. [28] An object is traveling around a circle with a radius of 15 meters. If in 20 seconds a central angle of $\frac{1}{5}$ radian is swept out, what is the linear speed of the object?		

31.	What is the domain and range of $f(t) = \sin t$?			
		[31]		
32.	Given $\sin \theta = \frac{1}{4}$ and $\sec \theta < 0$, find $\cos \theta$ and	tan θ.		
		[32]	The state of the s	
33.	Given $\sin \theta = \frac{2}{5}$ and $\sec \theta < 0$, find $\cos \theta$ and	tan θ .		
	[A] $\cos \theta = -\sqrt{21}$, $\tan \theta = -\frac{5}{\sqrt{21}}$	[B] $\cos \theta =$	$=-\frac{\sqrt{21}}{5}, \tan \theta = \frac{2}{\sqrt{21}}$	
	[C] $\cos \theta = -\frac{\sqrt{21}}{5}$, $\tan \theta = -\frac{2}{\sqrt{21}}$	[D] $\cos \theta =$	$=\frac{\sqrt{21}}{5}, \tan \theta = \frac{2}{\sqrt{21}}$	
				[33]
34.	Find the exact value of $\tan\left(-\frac{1}{4}\pi\right)$.			
	7-4	[34]		
35.	If cot $\theta = \frac{1}{4}$, find the exact value of:			
	(a) $\tan(90^{\circ} - \theta)$ (b) $\tan(\pi/2 - \theta)$			
		[35]		
36.	If $\cos \theta = \frac{1}{3}$, find the exact value of:			
	(a) $\sin(\pi/2 - \theta)$ (b) $\csc(90^{\circ} - \theta)$			
		[36]		
37.	If sec $\theta = 2$, find the exact value of: sec $\theta + c$	$sc(90^{\circ} - \theta)$		
	[A] -2.19 [B] -0.19	[C] 4	[D] 2	[37]
				[37]
38.	Evaluate: $\sin \frac{5}{3} \pi$ [A] $-\frac{1}{2}$ [B]	$\frac{\sqrt{3}}{2}$	$[C] - \frac{\sqrt{3}}{2} \qquad [D]$	$\frac{1}{2}$

[38]

39. Graph $y = 2\cos(x + \frac{\pi}{2})$ on the interval $-\pi \le x \le \pi$.

[A]

[B]

[C]

[D]

[39]

40. Find the exact value of $\tan \left(\cos^{-1} \left(\frac{\sqrt{3}}{2} \right) \right)$

41. Find the exact value of $\tan\left(\sin^{-1}\left(\frac{1}{2}\right)\right)$ [A] $-\frac{\sqrt{3}}{3}$ [B] $\frac{\sqrt{3}}{2}$ [C] $\sqrt{3}$

[41]

42. You are flying a kite and want to know its angle of elevation. The string on the kite is 33 meters long and the kite is level with the top of a building that you know is 26 meters high. Use an inverse trigonometric function to find the angle of elevation of the kite. Round to two decimal places.

[42]

- 43. Find two values of θ for the trigonometric equation $\cos \theta = 0.5878$. Round your answer to the nearest degree.
 - [A] 54°, 306°
- [B] 126°, 234°
- [C] 234°, 306°
- [D] 54°, 126°

[43]

44.	Find two values of θ degree.	for the trigonometric equ	tation sin $\theta = 0.9744$. Ro	ound your answ	er to the nearest
	[A] 257°, 283°	[B] 77°, 257°	[C] 77°, 103°	[D] 103°	, 283°
			a -		[44]
45.	Is the statement an ide	entity? $\tan x + \cot x =$	$\frac{1}{\sin x \cos x}$		
			[45]		
46.	If $\sin A = \frac{3}{7}$, $\frac{\pi}{2} \le A$	$\leq \pi$, and $\cos B = -\frac{5}{8}$,	$\pi \leq B \leq \frac{3\pi}{2}$, find the e	xact value of co	s(A+B).
	[A] $\frac{1}{56} (10\sqrt{10} - 3\sqrt{39})$	(B) $\frac{1}{56}(3\sqrt{39} -$	$10\sqrt{10}$ [C] $\frac{1}{56}(10\sqrt{10})$	$\sqrt{10} + 3\sqrt{39}$	[D] $-\frac{11}{56}$
					[46]
47.	Establish the identity	$\cos(\theta + 2\pi) = \cos\theta.$			
			[47]		
48.	$\sin(\theta + 2\pi)$ forms as	n identity with which of t			
	[A] $-\sin\theta$		[C] $\sin \theta$	[D] cos 6)
					[48]
49.	If $\cos \theta = \frac{4}{5}$ and θ	terminates in the first qua	drant, find the exact valu	e of $\sin 2\theta$.	
			[49]		
50.	Find the exact value of	of $\sin 2B$ if $\sin B = -\frac{5}{13}$	and B lies in quadrant IV.		
	[A] $\frac{119}{169}$	[B] $\frac{120}{169}$	[C] $-\frac{120}{169}$	[D] $-\frac{11}{16}$	9
	169	169	169	16	
Fi	00 1 00 0		a Call a Call and a Call		[50]
51.	csc 20 + cot 20 for	ns an identity with which			
	[A] cot θ	[B] $\cot \frac{\theta}{2}$	[C] $\tan \frac{\theta}{2}$	[D] tan	θ
	*2				[51]
52.	Find the exact value	of cos 75°.			
			[52]		
53	Solve the equation —	$1+13\sin x = 20\cos^2 x$, where $0^{\circ} \le x \le 360$	٥.	
. J.	2 31 to the oquation	2. 25511 11 2000 30	[53]		
			[]		

54.	A tree casts a shadow of 24 meters when the angle of elevation of the sun is 26°. Find the height of tree to the nearest meter.			sun is 26°. Find the height of the
			[54]	
55.		the camera is 51 m from t		ning an angle of 48° with the bove the platform is the window,
	48° 51 m			
	[A] 1.11 m	[B] 45.92 m	[C] 0.9 m	[D] 56.64 m
				[55]
56.	Given a triangle with two decimal places.	$\alpha = 1$, $\alpha = 40$ ° and β	= 28°, what is the leng	th of c? Round your answer to
			[56]	
57.	Given a triangle with answer to two decim	and the same of th	39°, what is (are) possib	le length(s) of c? Round your
			[57]	
58.	Solve the triangle give	ven that $a = 10, b = 18, and a = 10$	and $c = 14$.	
			[58]	
59.	59. Find the area of the triangle with $\alpha = 140^{\circ}$, $b = 3$ feet, and $c = 2$ feet. Rou decimal places.			t. Round your answer to two
			[59]	
60.	Find the area of a triangle with sides 7 m, 8 m, and 11 m. Round to the nearest hundredth.			
			[60]	·

Name

LTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Find an equation for the graph.

1)

$$A) y = 3 \cos(2x)$$

$$B) y = 2 \cos(3x)$$

C)
$$y = 3 \cos\left(\frac{1}{2}x\right)$$

D)
$$y = 2 \cos\left(\frac{1}{3}x\right)$$

2)

$$A) y = -4 \sin(2x)$$

B)
$$y = -4 \cos\left(\frac{1}{2}x\right)$$

C)
$$y = -4 \sin\left(\frac{1}{2}x\right)$$

D)
$$y = -4\cos(2x)$$

Find the amplitude, period, and phase shift of the sinusoidal funtion.

3)
$$y = -\frac{3}{4}\sin(\frac{1}{4}x + \frac{\pi}{2})$$

A) amplitude =
$$-\frac{3}{4}$$
; period = 8π ; phase shift = -2π

C) amplitude =
$$\frac{3}{4}$$
; period = 8π ; phase shift = 2π

B) amplitude =
$$\frac{3}{4}$$
; period = 8π ; phase shift = -2π

D) amplitude
$$=\frac{3}{4}$$
; period $=\frac{\pi}{2}$; phase shift $=-2\pi$

Graph the sinusoidal function over one complete period. 4) $y = 3 \sin(\frac{1}{2}x + \frac{\pi}{4})$

A)

C)

B)

D)

Graph the function. Show at least one period. 5) $y = 2\cos(3x + \frac{\pi}{2})$

5)
$$y = 2\cos(3x + \frac{\pi}{2})$$

A)

C)

· B)

D)

Open-ended question.

Both angles A and B are <u>first quadrant angles</u>. Use the following information to find the EXACT values indicated. Your answers must be in fraction/radical form. Decimal answers will not be accepted. (each part is 2 points)

$$\sin A = \frac{5}{13}$$

$$\cos B = \frac{8}{17}$$

tan B

Find these values:

$$\cos(A-B)$$

B/5 1/

- [1] A
- [2] $(x-4)^2 + (y-2)^2 = 45$
- [3] B
- [4] y = 0.500x + 2.500
- [5] {-4.78, -1.75, 3.03}
- [7] C
- [8] 75 gallons
- [9] C
- [10] C
- [11] $\{x | x \neq \pm 2, x \neq 0\}$
- [12] c in interval notation D: (0,00)
- [13]

local maximum at x = -1

local minimum at $x = \frac{1}{3}$

- Decreasing on the interval $(-1, \frac{1}{3})$ [14]
- [15] A
- [16] A
- [17] neither

[18]

Increasing on the interval $(-\infty, -1)$ and $(\frac{1}{3}, \infty)$ this is matter $(-\infty, -1)$ and $(\frac{1}{3}, \infty)$ this is matter $(-\infty, -1)$ and $(\frac{1}{3}, \infty)$

- [19] D
- [20] C
- [21] B
- [22] $(g \circ f)(x) = (3+4x^2)$; Domain: all real numbers
- [23] B
 - a. $R = -\frac{1}{3}x^2 + 100x$
 - b. R(100) = \$6666.67
 - C.

- d. 150; \$7500.00
- [24] e. 50.00
- [25] D
- [26] Inverses. Check to see that f(g(x)) = g(f(x)) and that g(f(x)) = f(g(x))
- [27] A
- [28] 4.19 feet
- $\frac{3}{20} \frac{\text{meters}}{\text{second}} = 0.15 \text{ m} / \text{sec}$
- 15
- [30] $\overline{17}$ D: $-\infty < t < \infty$
- [31] R: $-1 \le f(t) \le 1$
- [32] $\cos \theta = -\frac{\sqrt{15}}{4}$, $\tan \theta = -\frac{1}{\sqrt{15}} = -\frac{15}{15}$
- [33] C
- [34] _1
- [35] (a) $\frac{1}{4}$ (b) $\frac{1}{4}$

- [36] (a) $\frac{1}{3}$ (b) 3
- [37] C
- [38] C
- [39] D
- [40] $\frac{\sqrt{3}}{3}$
- [41] D
- [42] 51.99°
- [43] A
- [44] C
- [45] Yes
- [46] C
- [47] $\cos(\theta + 2\pi) = \cos\theta \cos 2\pi \sin\theta \sin 2\pi = \cos\theta \cdot (1) \sin\theta \cdot (0) = \cos\theta$
- [48] C
- [49] 25
- [50] C
- [51] A
- $\frac{\sqrt{2-\sqrt{3}}}{2}$ or $\frac{1}{4}(\sqrt{6}-\sqrt{2})$
- [53] 48.59°, 131.41°
- [54] 12 meters
- [55] D
- [56] 1.44
- [57] c = 14.21 or 1.34
- [58] $\alpha = 33.56^{\circ}, \beta = 95.74^{\circ}, \gamma = 50.7^{\circ}$
- [59] 1.93 ft²
- [60] 27.93 m²

- 1) Answer: D
- 2) Answer: C
- 3) Answer: B
- 4) Answer: D
- 5) Answer: C