Form of the relationship

Strength of the relationship

<u>Direction</u> of the relationship

We have data, from an experiment or a survey

First job:

Which is the explanatory which is the response variable?

- Choose by logic
- If it is an experiment the description will tell you.

Second job:

You will make scatter plots.

EXPLANATORY ISX, RESPONSE IS Y Modine isthre a relatingth is

Third job:

Describe what you see

NEXT:

If it is a line....

Babies.idf

Cats.idf my dino Dinosaurs.id

Explanatory relationships show a pattern we can use to make predictions.

Vocabular for describing patterns

Form: linear, curved, clusters

Strength: Strong, weak

When one variable increases, the other variable is very likely, or not, to increase a predictable amount.

How closely the points fit to the form you described ("Yeah, I see a line" or "Well, if you squint.."

Direction: Positive or negative no relation

As one increase the other increases

As one increase the other decreases

Outliers X or Y

X far from rest of data left to right, a gap left to right

Y far above or below the 3rd

Y far above or below the data

Outliers: Breaks the pattern

Two kinds x and y

X

Might not have large residual.

Influential:

Changes your results.
slope, correlation, intercept
x's outliers can be more potent

Would have large residual.

Slope: The value of slope states the number of units of change in the response variable for each unit of change in the explanatory variable ON AVERAGE

Intercept: The value of the intercept states the PREDICTED value of the response variable when the explanatory variable is 0.

Using the line:

Plug in the correct units, write your answer with the correct units.

y=pred......

How analysis of two variables allows us to make predictions:

Make scatter plot

Analyze scatter plot

- o When there is a relation state FSD
- o When there is no relation says and stop

When Form = Linear, create LSRL

- o Interpret the LSRL
- O Interpret the correlation

→ Use LSRL to make predictions

Slope: The value of slope states the number of units of change in the response variable for each unit of change in the explanatory variable ON AVERAGE

Intercept: The value of the intercept states the PREDICTED value of the response variable when the explanatory variable is 0.

$$\hat{y} = 0.355x + .4473$$
- For each increase of 1 _(units)__ in __(explanatory variable)___
there is a _(slope #)__ increase in the __(response variable)__
ON AVERAGE.

- When the __(explanatory variable)__
is 0 the __(response variable)__ IS PREDICTED to be __(intercept #).

where x=the height of the dinosaur in meters

 \hat{y} = the predicted length in meters

my dino Dinosaurs.idf

- on average
- predicted
- using hats
- units

$$\hat{y} = 0.355x + .4473$$

where x=the height of the dinosaur in meters \hat{y} = the predicted length in meters

Interpretting r²: (coefficient of determination)

- r^2 states the percentage of the variation in the response variable that is explained by a linear regression of the response variable on the explanatory variable.
- what is strong depends on context.

Strong correlations are above .85. Moderate are between .65 and .85. Weak .35 to .65 No relation < .35

Interpretting r: (correlation coefficient)

- r is closely related to slope.
- r tells us the direction of slope
- To discuss strength, square it.

Interpretting r²:

- r² states the percentage of the variation in the response variable that is explained by a linear regression of the response variable on the explanatory variable.

- what is strong depends on context.

Strong correlations are above .85. Moderate are between .65 and .85. Weak .35 to .65.

No relation < .35

___(r² number as a %)___ of the variation in ___(response variable)___ is explained by a linear regression on __(explanatory variable).

6.25-.27, 6.29,.31,

Using the line:

Plug in the correct units, write your answer with the correct units.

But only within the range of validity

outside is extrapolation.

DO NOT EXTRAPOLATE

Range of validity; The range of the x values in the original data.

Calculator skills

Correlation, correlation coefficient = r Direction and strength

coefficient of determination $= r^2$ strength _

Correlation describes

- the strength anddirection of
- the straight line relation

Objectives today:

- Recap features of correlation
- Execute a complete analysis

- the strength and
- direction of
- the straight line relation

- C--1 to 1, closer to 1s is stronger —)
 - Does not care about units
 - (- Correlation is the same if you switch x and y
 - Straight line only
 - Really affected by outliers

- the strength and
- direction of
- the straight line relation

- Positive is positive, negative is negative
- -1 to 1, closer to 1s is stronger
- Does not care about units
- Correlation is the same if you switch x and y
- Straight line only
- Really affected by outliers

- the strength and
- direction of
- the straight line relation

- Positive is positive, negative is negative - -1 to 1, closer to 1s is stronger

Does not care about units

- Correlation is the same if you switch x and y

✓- Straight line only

✓- Really affected by outliers

RANT

Do not get into using "r" for strength. Square it and then the numbers make sense.

"Interpret an r =-.8"

- Negative relation
- r² of .64, indicating a weak linear relation

Strong $r^2 = .85 \text{ to } 1$ Moderately strong $r^2 = .65$ to .85 Weak $r^2 = .45$ to .65 Very weak to none $r^2 < 45$

What does correlation say? The strength and the direction of the relationship.

Ask me for the strength and I will square it and look at that number.

HAV	MA angle	HAV angle	MA angle	HAV angle	MA
28	18	21	15	16	10
32	16	17	16	30	12
25	22	16	10	30	10
34	17	21	7	20	10
38	33	23	11	50	12
26	10	14	15	25	25
25	18	32	12	26	30
18	13	25	16	28	22
30	19	21	16	31	24
26	10	22	18	38	20
28	17	20	10	32	37
13	14	18	15	21	23
20	20	26	16		

MA makes the front of your foot turn. HAV is big toe problem requiring surgery.
- make scatterplot - describe the relation - calculate correlation - do you think there is relation?

Relationship of the HAV impact and MA impact

- make scatterplot
- describe the relation
- calculate correlation
- do you think there is relation?

The points spread out in a fan shape.

There is no strong line or curve.

The relationship is positive.

There is one apparent x and y outlier at 50° MA and 12° HAV.

The weak PATTERN shown in the graph is verified by the very low r² of .09.

There appears to be no LINEAR relation between MA and HAV, but I am curious about the influence of the outlier.

Correlation measures the strength of a line.

Lets talk about the line

Calculator skills

- Diagnostics on
- Running a line
- Piping it
- Plotting scatter plot and line

$$Y = mx + b$$
, $y = ax + b$

Years of	Median		
School	salary		
7	\$	27,964	
11	\$	33,435	
12	\$	43,165	
13	\$	50,359	
14	\$	54,861	
16	\$	82,197	
18	\$	99,516	
22	\$	129,773	

- 1) Describe the relationship and comment on the validity of the linear relation?
- 2) What should you earn with 20 years of education?
- 3) What should you earn with 40 years of education?

 Comment on this result
- 4) Interpret the intercept
- 5) Interpret the slope
- 6) Interpret r²

where x= years since 1990 and \mathfrak{T} = predicted life expectancy at birth

D

- 1) Describe the relation and comment on the validity of the linear relation?
- 2) What is the estimated life expectancy in 1940?
- 3) What life expectancy be in 2050? Comment on this result
- 4) Interpret the intercept
- 5) Interpret the slope
- 6) Interpret r²

When wille was

```
___(r² number as a %)__ of the variation in __(response variable)__ is explained by a linear regression on ___(explanatory variable).

- When the ___(explanatory variable)__ is 0 the ___(response variable)__ IS PREDICTED to be ___(intercept #).

- For each increase of 1 __(units)__ in ___(explanatory variable)__ there is a __(slope #)__ increase in the ___(response variable)__ ON AVERAGE.
```

- -Make a scatter plot
- -Figure out explanatory vs response
- -F,S,D
 - x and y outliers
- -Run regression (write it properly)
- Know six facts about r
 - Positive is positive, negative is negative
 - -1 to 1, closer to 1s is stronger
 - Does not care about units
 - Correlation is the same if you switch x and y
 - Straight line only
 - Really affected by outliers
- -Interpret r
 - o Direction
 - o Strength
- -Interpret slope
- -Interpret intercept
- -Interpret r²
- -Recognize to range of validity/extrapolation problem
- Use the line to predict, use the line "backwards"

- the strength and
- direction of
- the straight line relation
- Positive is positive, negative is negative
- -1 to 1, closer to 1s is stronger
- Does not care about units
- Correlation is the same if you switch x and y
- Straight line only
- Really affected by outliers

my dino Dinosaurs.idf

Babies.idf

Cats.idf

regressdemline.gsp