
A farmer is trying to pull out a tree stump.

Two mules are pulling on the stump, as per the picture.

How much force are they applying to the stump?

2

A Ultralight pilot tries to land at the airport on a hot day.

Unfortunately, he runs into an updraft from the tarmac and a headwind.

In a huge coincidence the force of his engine and gravity trying to land him, and the head wind, and the updraft all perfectly offset and for a moment he sits perfectly still.

Without the wind, his engine and gravity would be moving him at a speed of 20mph descending at a 25° angle to the ground.

The updraft is vertical. The headwind is towards him, perfectly horizontal.

What is the speed of the headwind and the updraft?

```
1) v = 200(cos(140^{o})i + sin(140^{o})j)

w = 350(cos(60^{o})i + sin(60^{o})j)

V= -153.2089i + 128.5575j

W = 175i + 303.1089j

Total = 21.7911i+ 431.6664j

T = 432.2161(cos(87.1101°)i+sin(87.1101°)j)

It moves along an 87.1101 degree line.
```

2) His flight: $V=20(\cos(200^{\circ})i+\sin(200^{\circ})j)$ Head wind: $H=M_{H}(\cos(0^{\circ})i+\sin(0^{\circ})j)$ Updraft: $U=M_{U}(\cos(90^{\circ})i+\sin(90^{\circ})j)$ V=-18.7939i-6.8404j $H=M_{H}i+0j$ $U=0i+M_{U}j$ V+H+U=0i+0j $-18.7939i-6.8404j+M_{H}i+0j+0i+M_{U}j=0$ i equation: $-18.7939i+M_{H}i=0$ j equation: $-6.8404j+M_{U}j=0$

 M_H =18.7939 = Speed of headwind. M_U j=6.8404 = Speed of updraft