Geometry 22:	REVIEW	for Quiz	1.2-1.5
Geometry 24:	TAND A TED AA	TOI Amre	TOW-TO

Name		
Period	Date	

Use the diagram to give an example of each of the following using proper NOTATION!

- 1. Line (name the same line 2 different ways if possible)
- 2. Ray (name the same ray 2 different ways if possible)
- 3. Segment (name the same segment 2 different ways if possible)
- 4. Intersection of the 2 planes shown
- 5. Intersection of plane QRA and line BC
- 6. 3 collinear points
- 7. 3 noncollinear points _____
- 8. A pair of opposite rays

Draw a sketch and label as needed. Do the best that you can with the drawings.

9. Three collinear points A, B, and C.

10. \overrightarrow{MN} intersecting \overrightarrow{AB} at point R.

11. Coplanar points W, X, Y, and Z.

12. Collinear rays, \overrightarrow{JK} and \overrightarrow{JC}

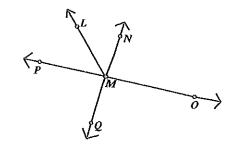
13. ray AB bisecting <DAT

14. Linear pair with <FUN and <NUR

5. perpendicular bisector of segment XY

16. Adjacent complementary angles

DIAGRAM	GIVEN INFORMATION	EQUATION	<u>X =</u>	FIND:
16. A B C	AB = 14 AC = 42 BC = x		X =	BC =
17.	<tac <cag<br="" ≅="">m<tac +="" 20°<br="" =="" x="">m<tag 10<="" 3x="" =="" td="" −=""><td>eti e e e e e e e e e e e e e e e e e e</td><td>X =</td><td>m<tag=< td=""></tag=<></td></tag></tac></tac>	eti e e e e e e e e e e e e e e e e e e	X =	m <tag=< td=""></tag=<>
A G		er dw		are active real
18. A	m< ABC = 20x + 24 m <cbd +="" 10x="" 6<="" =="" td=""><td></td><td>X = ()</td><td>m<ebd =<br="">m<cbd =<="" td=""></cbd></ebd></td></cbd>		X = ()	m <ebd =<br="">m<cbd =<="" td=""></cbd></ebd>
19. P	<nmo +="" -="" 15="" 5<="" <="" a="" is="" m<lmn="6x" m<lmo="13x" right="" td=""><td></td><td>X=</td><td>m<lmn =<br=""> m<pml =<="" td=""></pml></lmn></td></nmo>		X=	m <lmn =<br=""> m<pml =<="" td=""></pml></lmn>
$R \circ U$ U $L \circ N$	\overrightarrow{LE} bisects \overrightarrow{RN} (so point U is the of \overrightarrow{RN}) RU = 7x + 12 NR = 16x - 20		X =	RU = UN = NR =


Decide whether the statement is true or false. Briefly explain your answer.

- 21. Lines have endpoints.
- 22. Planes have edges.
- 23. Three lines that intersect at the same point must all be in the same plane.
- 24. Two planes may intersect a third plane without intersecting each other.

Complete the following using the diagram at right;

- 35. Angle addition postulate
- 26. Segment addition postulate

$$m < LMN + \underline{\hspace{1cm}} = m < LMO$$

27. Circle the 4 expressions that make sense. (one from each column)

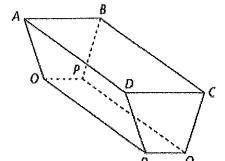
$$AB \cong CD$$

$$\overline{XY} = 12 \text{ cm}$$

$$\overline{XY} = 12 \text{ cm}$$
 m

$$m < ABC \cong m < DEF$$

$$\overline{AB} \cong \overline{CD}$$


$$XY = 12 \text{ cm}$$

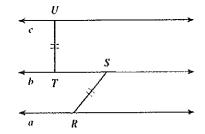
$$<$$
FEG = 32°

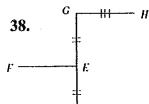
$$m < ABC = m < DEF$$

Complete the following sentences.

- 28. Two distinct planes intersect at a ______.
- 29. Through any , there is exactly one line.

Use the figure at the right to answer the following questions.


- **30.** Are points O, B, R, and C coplanar?
- **31.** Name three lines that intersect at *P*.
- 2. What is the intersection of plane AOB and plane POR?


Draw a sketch of each of the following. Make up values for any angles or segments you draw, and mark your diagrams with congruence marks whenever appropriate.

- 33. acute angle ABC
- 34. Obtuse angle SBT 35. \overline{YG} with midpoint A 36. Straight angle XYZ

Using proper notation, list all information given by the marks on the diagram.

37.

and the second of the second o

entra de la Companya de la Companya

and the group of the Albert Control of the Control

And the second of the second o

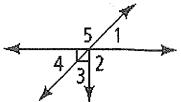
and the second of the second o

and the large of the first of the control of the first of the second of

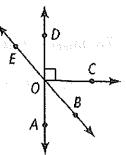
t de la composition de la composition de la composition de la financia de la composition de la

per.

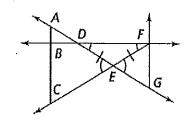
Name_


Label and mark each diagram with the given INFORMATION, then write the EQUATION that matches the diagram. SOLVE for x, then find the missing values.

FIND:	AB =	BC=	m <tag=< th=""><th></th><th>4</th><th>m<ebd =<="" th=""><th>m<cbd =<="" th=""><th>m<lmn =<="" th=""><th></th><th></th></lmn></th></cbd></th></ebd></th></tag=<>		4	m <ebd =<="" th=""><th>m<cbd =<="" th=""><th>m<lmn =<="" th=""><th></th><th></th></lmn></th></cbd></th></ebd>	m <cbd =<="" th=""><th>m<lmn =<="" th=""><th></th><th></th></lmn></th></cbd>	m <lmn =<="" th=""><th></th><th></th></lmn>		
= X	# X		# ×			11 ×		X		
EQUATION		Reason:			Reason:		Reason:			Reason:
GIVEN INFORMATION	BC is twice as long as AB AC = 42		\overline{AC} is the angle bisector of <tag< td=""><td>m<tac 28°<br="" =="">m<tag 10<="" 3x="" =="" td="" –=""><td></td><td>m< ABE = 20x + 24</td><td>m<ebd +="" 30x="" 6<="" =="" td=""><td>$\overline{NQ} \perp \overline{PO}$ m<lmn -="" 15<="" 6x="" =="" td=""><td>m<lmo +="" 13x="" 5<="" =="" td=""><td></td></lmo></td></lmn></td></ebd></td></tag></tac></td></tag<>	m <tac 28°<br="" =="">m<tag 10<="" 3x="" =="" td="" –=""><td></td><td>m< ABE = 20x + 24</td><td>m<ebd +="" 30x="" 6<="" =="" td=""><td>$\overline{NQ} \perp \overline{PO}$ m<lmn -="" 15<="" 6x="" =="" td=""><td>m<lmo +="" 13x="" 5<="" =="" td=""><td></td></lmo></td></lmn></td></ebd></td></tag></tac>		m< ABE = 20x + 24	m <ebd +="" 30x="" 6<="" =="" td=""><td>$\overline{NQ} \perp \overline{PO}$ m<lmn -="" 15<="" 6x="" =="" td=""><td>m<lmo +="" 13x="" 5<="" =="" td=""><td></td></lmo></td></lmn></td></ebd>	$\overline{NQ} \perp \overline{PO}$ m <lmn -="" 15<="" 6x="" =="" td=""><td>m<lmo +="" 13x="" 5<="" =="" td=""><td></td></lmo></td></lmn>	m <lmo +="" 13x="" 5<="" =="" td=""><td></td></lmo>	
DIAGRAM	A B				4	A	E		The state of the s	

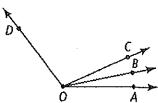

RU =	m< XYD =	m <lgh =<="" th=""><th>LN is the of KM</th></lgh>	LN is the of KM
11 ×	" ×	# ×	11 ×
Reason:	<u>Reason:</u>	<u>Reason:</u>	Reason:
\overline{LE} bisects \overline{RN} RU = 7x + 12 NR = 16x - 20	$\langle XYD \stackrel{\sim}{=} \langle ZYP \rangle$ m $\langle XYD = 3X$ m $\langle DYZ = 50^{\circ}$ m $\langle XYP = 22X - 46$	<pre><fgj +="" 2="" <igh="" and="" angles="" are="" complementary="" m<fgj="x</pre" m<igh="3x"></fgj></pre>	$KO = OM$ $\overline{LO} \perp \overline{KM}$ $KL = x + 2$ $LM = 3x - 6$
R U E L	Z. d. X	J. J	K O N

Geometry 22: Practice with $(1.2 \rightarrow) 1.5$

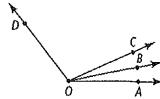

- 1. Use the diagram at the right to decide if each is true or false. Explain
- a. $\angle 2$ and $\angle 5$ are adjacent angles.
- **b.** $\angle 1$ and $\angle 4$ are vertical angles.
- c. $\angle 4$ and $\angle 5$ are complementary.

- 2. Name an angle or angles in the diagram described by each of the following.
 - a. complementary to $\angle BOC$
 - **b.** supplementary to $\angle DOB$
 - **c.** adjacent to $\angle AOC$

- 3. For the following exercises, can you make each conclusion from the information in the diagram below? Explain.
- a. $\angle BCE \cong \angle FGE$



b. $\overline{FE} \cong \overline{EG}$


c. $\overrightarrow{DE} \cong \overline{EF}$

- d. $\angle ADB$ and $\angle FDE$ are vertical angles
- 4. Sketch the following situations with appropriate tick marks.
- a. $\angle ABC$ and $\angle CBD$ form a linear pair.
- b. \overrightarrow{XY} bisects $\angle WXZ$
- c. $\angle LMO$ and $\angle PMQ$ are vertical angles

5. Using the diagram below, given that $m\angle AOB = 4x - 1$; $m\angle BOC = 2x + 15$; $m\angle AOC = 8x + 8$. Solve for x. Find the angle measures.

6. Using the diagram below, given that \overrightarrow{OB} bisects $\angle COA$. Given that $m \angle AOB = 3x + 8$ and $m \angle BOC = 2x + 14$. What are $m \angle AOB$ and $m \angle AOC$?

7. $\angle JKL$ and $\angle MNP$ are complementary; $m\angle JKL = 2x - 3$ and $m\angle MNP = 5x + 2$. What are $m\angle JKL$ and $m\angle MNP$? Show a check for your answer.

8. \overrightarrow{QS} bisects $\angle PQR$. Solve for x and find $m\angle PQR$. Hint: Draw a diagram

a.
$$m\angle PQS = 3x$$
; $m\angle SQR = 5x - 20$

b.
$$m \angle PQS = 2x + 10$$
; $m \angle PQR = 5x - 3$

9. The measure of one angle is 38° less than the measure of its *complement*. Find the measure of each angle.

10. If $\angle 1$ and $\angle 2$ are form a linear pair. $m\angle 1$ is 12 more than 6 times the $m\angle 2$, find $m\angle 1$ and $m\angle 2$.

11. If $\angle 1$ and $\angle 2$ are complementary, $m\angle 1 = x^2 - 2x$ and $m\angle 2 = 27^\circ$. Find x and $m\angle 1$. Check your answers!