Name	ANSWERS	Period	Date	_
Coomotine	71. Extra Practice with 12-15			

- 2. What are two other names for \overrightarrow{AB} ? \overrightarrow{AC} , \overrightarrow{SA}

4. What is the intersection of the two planes?

See the figure at the wintersection. Use the figure at the right for Exercises 5-7. Name each of the following.

- 6. two points that are 3 units from E point H and point B
- 7. the coordinate of the midpoint of AGpoint D_ - 2

Use the figure at the right for Exercises 8-11.

- 8. What are two other names for $\angle 1$? $\angle ECF = \angle FCE = D$ $3x^{2} + 4x + 20$

Think about your answers!!)

- 12. Through any three points, there exists exactly one line. Sometime S
- always 13. If two distinct lines intersect, their intersection is a point.
- 14. A line contains at least two points. always
- 15. Through any three collinear points, there is exactly one plane. Never (always influte planes)
- 16. If $\frac{RS}{ST} = \frac{5}{7}$, find the indicated values. a) $x = \frac{3}{5}$ b) $RS = \frac{5}{5}$

2x+9 4x-15 c)
$$ST = \frac{77}{4x-15}$$
 d) $RT = \frac{132}{32}$

$$\frac{2x+9}{4x-15} = \frac{5}{7} \qquad \frac{7(2x+9)}{14x+63} = \frac{5}{20x-75} \qquad x=23$$

$$\frac{138}{138} = 6x$$

Suppose S is between T and V, R is between S and T, and T is between R and Q. If QV = 23, QT = 8, and TR = RS = SV

- 17. Make a sketch of the information provided.
- 18. Find each of the following:
- a) RS = 5
- b) QS= \}
- 8 × × × × × 8+3x=23 Q T R 3 V 3x=16
- c) TS = 10 d) TV = 15

Use the figure at the right for Exercises 20 and 21.

- **20.** Given: ST = 3x + 3 and TU = 2x + 9.
 - a. What is the value of ST? (2)
 - b. What is the value of TU_{Q1}

- **21.** Given: ST = x + 3 and TU = 4x 6.
 - a. What is the value of ST?

b. What is the value of SU?

22. $\angle 1$ and $\angle 2$ form a straight angle. If $m \angle = 5x^2 + 112$, and $m \angle = 4x^2$ +56, find $m \angle 1$ and $m \angle 2$.

$$(x+2)(6x-6)=0$$

5x2+112+4x+56=180 5x2+4x + 168=180

Find the value(s) of the variable(s).

2x+40 =110

X= , Sx+17.5 , Sx=17.5 (x=35)

In Exercises 19 and 20, assume that $\angle A$ is supplementary to $\angle B$

X+10+12x+1=180 @

- 19. $m\angle A = (x + 10)^n$, $m\angle B = (12x + 1)^n$, $m\angle C = (5x + 2)^n$
- 20. $m \angle A = (2.5x + 17)^n$, $m \angle B = (21x 25)^n$, $m \angle C = (8x 11)^n$

and complementary to $\angle C$. Determine $m\angle A$, $m\angle B$, and $m\angle C$.

2.5x+17+21x-25=180 (x=8) 08 2.5x+17+8x-11=90(x=8)

In the figure below (not drawn to scale), AC and BD bisect each other. For the following problems, find all possible values for x and find the measure(s) of each segment.

1. $BM = 3x^2 - 7x + 10$ and $MD = x^2 + 6x - 10$

$$3x^2 - 7x + 10 = x^2 + (6x - 10)$$

$$2x^2 - 13x + 20 = 0$$

$$(x-4)(2x-5)=0$$

2. MC = 2(x-3) and AC = 3(x+5)

x=4, 1/2

BM = MD = 30

OR RM=MD=11,25

2(2x-6) = 3x+15

MC = AC = 96

3. In the figure below (not drawn to scale), GI bisects $\angle HGF$, $m\angle FGI = (5x^2 + 9x - 20)^\circ$, and $m\angle HGI = (4x^2 + 5x + 1)^\circ$.

