Lesson 5.6 Inequalities in One Triangle

AUSWERS

Objective: To use inequalities involving angles and sides of triangles.

Theorem 5-10				
Theorem	If	Then		
If two sides of a triangle are not congruent, then the larger angle lies opposite the longer side.	XZ > XY	$m \angle Y > m \angle Z$		

The converse is also true...

Theorem 5-11				
Theorem	If	Then		
If two angles of a triangle are not congruent, then the longer side lies opposite the 'ger angle.	$m \angle A > m \angle B$	BC > AC		

1. Using the information below, order the sides of $\triangle TUV$ from shortest to longest.

形。啊。而

2. In the figure below, $m \angle S = 24$ and $m \angle O = 130$. Which side of $\triangle SOX$ is the shortest side? Why?

OX is shortest b/c across from smallest angle (25)

For a neighborhood improvement project, you		15 ft \
volunteer to help build a new sandbox at		12 ft
the town playground. You have two boards that will make up two sides of the		
triangular sandbox. One is 5 ft long and the	8 11	8 ft
other is 8 ft long. Boards come in the		5 ft
lengths shown. Which boards can you use	5 ft	
for the third side of the sandbox? Explain.	31 (2 ft

For three segments to form a triangle, their length must be related in a certain way. Notice that only of the sets of segments below can form a triangle. The sum of the smallest two lengths must be greater than the greatest length.

	Theorem 5-12	Triangle Inequal	ity Theorem	
Theorem				3
The sum of the lengths of any two sides of a triangle is greater than the length of the third side.	XY + YZ > XZ	YZ + XZ > XY	XZ + XY > YZ	x Z

Can the following segment lengths form a triangle? Why or why not?? (hint: add the 2 smaller sides and check to see if that sum is GREATER than the 3^{rd} side. If it is GREATER than it CAN be a triangle)

7, 4, 15	3, 20, 21
7+4=	3 r 20 = 23 > 21
sunistess, so NOT a D	Scam is great, so yes A
3, 7, 8	5, 10, 15
3+7=	5+10=
10 >8	15 = 15
sum is greater, so yes a D	Sum is = to 3 side, so NOT a D

A triangle has side lengths of 5 ft. and 8 ft. What is the range of the possible lengths for the third side? (hint: SUBTRACT for the lower end of range, and ADD for upper end of range)

A triangle has side lengths of 4 in. and 7 in. What is the range of the possible lengths for the third side?

Use $\triangle ABC$ for Exercises 1 and 2.

- 1. Which side is the longest?
- 2. Which angle is the smallest?

Can a triangle have sides of lengths 4, 5, and 10? Explain.

4. A friend tells you that she drew a triangle with perimeter 16 in. and one side of length 8 in. How do you know she made and error in her drawing?

Practice with FACTORING...solve by factoring.

1)
$$k^2 + 8k + 12 = 0$$
 2) $3x^2 + 14x + 16 = 0$

$$2) \ 3x^2 + 14x + 16 = 0$$

$$(k+2)(k+6)=0$$

 $k=-2,-6$

$$(x+a)(3x+8)=0$$

 $(x=-a)^{-8/3}$

3)
$$2x^2 + 7x - 15 = 0$$

For Exercises 1-3, list the angles of each triangle in order from smallest to largest.

1.

4J, 4L, 4K

3.

<0,25,2R

For Exercises 4-7, list the sides of each triangle in order from shortest to longest.

4.

5.

6. $\triangle ABC$, with $m \angle A = 99^{\circ}$, $m \angle B = 44^{\circ}$, and $m \angle C = 37^{\circ}$

AB, AC, BC

7. $\triangle ABC$, with $m \angle A = 122^{\circ}$, $m \angle B = 22^{\circ}$, and $m \angle C = 36^{\circ}$

AC, AB, BC

Can a triangle have sides with the given lengths? Explain.

8.8 cm, 7 cm, 9 cm

9.7 ft, 13 ft, 6 ft 7 + (2 = 13

10. 20 in., 18 in., 16 in.

11.3 m, 11 m, 7 m

3-7

12. Determine which side is shortest in the diagram to the right.

13. Error Analysis A student draws a triangle with a perimeter 36 cm. The student says that the longest side measures 18 cm. How do you know that the student is incorrect? Explain.

the other 2 sides would add up to 18, but should be great than 32 side.