NAME	

OBSERVING THE RELATIONSHIP BETWEEN

PHOTOSYNTHEIS AND CELLULAR RESPIRATION

	mak ny		
Write the formula for photosynthesis.			
		1 6	
CO2+1420=	INE COL	$1n()_{c}$	+0,
Write the formula for cellular respiration	1-making energy	.10106	102
C.H.O.			0
CuHI2Ou+Oa ETE	$\rightarrow CO_2 +$	Q 5 1-1	+ ATP

Bromthymol blue (BTB) is a pH indicator, turning different colors depending on the pH of the solution.

Color of BTB in an acidic solution	Yellow	Color Indicates	
Color of BTB in a basic solution	<u>blue</u>	Color Indicates	no CO2

Materials

Test tubes	corks	BTB	elodea	straw
2 racks	1amp	dark cabinet	beaker	marker

Procedure

- 1. Obtain 2 test tubes. Write your name on both tubes and also label one "light" and the other one "dark".
- Measure 25 ml of BTB into a small beaker and using a straw, blow carbon dioxide into the BTB until it turns yellow.
- 3. Pour the yellow BTB solution into the tube labeled "light" until the tube is approximately 2/3 full.
- 4. Add a sprig of elodea to the tube and put a cork on the top of the tube.
- 5. Place this tube in rack labeled "light tubes".
- 6. Fill the other tube labeled "dark" 2/3 full with the original dark BTB solution.
- 7. Add a sprig of elodea to the tube and put a cork on the top of the tube.
- 8. Place this tube in the rack labeled "dark tubes".
- 9. The "light tubes" will be incubated overnight with a bright light shining on them.
- 10. The "dark tubes" will be incubated overnight in a dark cabinet.

Tube	Starting Color of BTB	Ending Color of BTB	Reaction Taking Place In Tube	
YL	yellow	due	mWz	photosynthes
BL	bly	blue	no (br	photosynthes:
YD	Jellow	yellow		1050
BD	blue	Yellow	1 Grass	(espiration
Blue	5he			_

- 1. Explain why the color of the BTB solution changed after you exhaled into it.
- 2. Explain the color change that took place in the tube in the light.
- 3. Explain the color change that took place in the tube in the dark.
- 4. What kind of organisms carry out photosynthesis and when does it occur?
- 5. What kinds of organisms carry out cellular respiration and when does it occur?
- 6. Why do plants (autotrophs) need animals (heterotrophs) in order to survive?
- 7. What would happen if plants carried out photosynthesis and cellular respiration at the same rate?