Practice

For use after Lesson 2.3

Tell whether the shaded figure is a reflection of the nonshaded figure.

Draw the figure and its reflection in the x-axis. Identify the coordinates of the image.

5.
$$W(3, 1), X(3, 4), Y(1, 4), Z(1, 1)$$

Draw the figure and its reflection in the y-axis. Identify the coordinates of the image. reflect to y (-x,y) $(X,Y) \rightarrow (-X,Y)$

8. In a pinball game, when you perfectly reflect the ball off of the wall, will the ball hit the bonus target?

no reflect would

go the other way

	- 4 -	y	W	all				
	-3-	K	N.	W. NUS				
-	-2-		n	n				
	-1	1	-()-		-C)_	
		1	i 2	2 :	3 4			,
_	-2				0			
-	-3		1					
-	-4	0)			C)

2.4

Practice

For use after Lesson 2.4

Tell whether the shaded figure is a rotation of the nonshaded figure about the origin. If so, give the angle and the direction of rotation.

The vertices of a triangle are A(1, 1), B(3, 1), and C(3, 4). Rotate the triangle as described. Find the coordinates of the image.

- 3. 90° clockwise about the origin
- 4. 270° counterclockwise about vertex A

A(1,-1) B'(1,-3) C'(4,-3)

Same as 90° clockwise $(x,y) \rightarrow (y,-x)$ (y,-3) (4,-3)

5. A triangle is rotated 180° about the origin. Its image is reflected in the x-axis. The vertices of the final triangle are (-4, -4), (-2, -4), and (-3, -1). What are the vertices of the original triangle?

 $180^{\circ}(x,y) \rightarrow (-x,-y)$ Reflect over $\times (x,y) \rightarrow (x,-y)$ $(-4,-4) \rightarrow (4,4) \rightarrow (4,-4)$ $(-2,-4) \rightarrow (2,4) \rightarrow (2,-4)$ $(-3,-1) \rightarrow (3,1) \rightarrow (3,-1)$

2.6

Practice

For use after Lesson 2.6

The two figures are similar. Find the ratios (shaded to nonshaded) of the perimeters and of the areas.

1.

area

$$\left(\frac{3}{5}\right)^2 = \frac{9}{25}$$

The polygons are similar. Find x.

3.

$$\frac{8}{10} = \frac{3}{x}$$

5. You buy two picture frames that are similar. The ratio of the corresponding side lengths is 4:5. What is the ratio of the areas?

$$\frac{4}{5} = \frac{4}{5} \times \frac{4}{5} = \frac{16}{25}$$

(1	1	e	a

N	2	m	ne	
1 1	а	ш	ı	

Date

Dilations For use with Activity 2.7

Essential Question How can you enlarge or reduce a figure in the coordinate plane?

ACTIVITY: Comparing Triangles in a Coordinate Plane

Work with a partner. Write the coordinates of the vertices of the shaded triangle. Then write the coordinates of the vertices of the nonshaded triangle.

 $(-2, 1) \times 2 = (-4, 2)$ (-7, 6-5-4-1) $(-2, 2) \times 2 = (4, 4)$ $(-7, -2) \times 2 = (2, -4)$

a. How are the two sets of coordinates related?

the vertices or points of shaded b. How are the two triangles related? Explain your reasoning.

Large triangle 3 times bigger-see

c. Draw a dashed triangle whose coordinates are twice the values of the corresponding coordinates of the shaded triangle. How are the dashed and shaded triangles related? Explain your reasoning.

> Similar triangles 12 M. D. W. - notimil.

2.7 Dilations (continued)

d. How are the coordinates of the nonshaded and dashed triangles related? How are the two triangles related? Explain your reasoning.

multiply coordinates of nonshaded by 3 to get dashed (red) line, similar triangles

2 ACTIVITY: Drawing Triangles in a Coordinate Plane

Work with a partner.

- **a.** Draw the triangle whose vertices are (0, 2), (-2, 2), and (1, -2).
- **b.** Multiply each coordinate of the vertices by 2 to obtain three new vertices. Draw the triangle given by the three new vertices. How are the two triangles related?

blue - similar (scale factor of 2)

c. Repeat part (b) by multiplying by 3 instead of 2.

(0,6) (-6,6) (3,-6)

Similar - scale of 3

Name	Date	
	_	

- 2.7 Dilations (continued)
- 3 ACTIVITY: Summarizing Transformations

Work with a partner. Make a table that summarizes the relationships between the original figure and its image for the four types of transformations you studied in this chapter.

Translation > same size + shape

Slides left, right, up, down

Reflection > same size + shape, mirror Image

Rotation > same size + shape, rotated about a point

Dilation > different size, same shape, image is enlargement or reduction

What Is Your Answer?

4. IN YOUR OWN WORDS How can you enlarge or reduce a figure in the coordinate plane?

reduce (value b/ o and 1)
enlarged value greater than 1)

5. Describe how knowing how to enlarge or reduce figures in a technical drawing is important in a career such as drafting.

-details of an object
-accuracy!
-possibilities are endless