Grade 6 Mathematics Vocabulary Word Wall Cards

Mathematics vocabulary word wall cards provide a display of mathematics content words and associated visual cues to assist in vocabulary development. The cards should be used as an instructional tool for teachers and then as a reference for all students. **The cards are designed for print use only.**

Table of Contents

Number and Number Sense

Ratio

Equivalent Relationships

Equivalent Relationships

Absolute Value

Perfect Squares

Exponential Form

Powers of Ten

Computation and Estimation

Fraction Multiplication

Fraction Division

Fraction Division

Multiplication and Division of Decimals

Comparing Integers

Integer Operations: Addition and

Subtraction

Integer Operations: Model Addition and

Subtraction

Integer Operations: Multiplication and

Division

Order of Operations

Measurement and Geometry

<u>Pi</u>

<u>Circumference</u>

Area of a Circle

Perimeter

<u>Area</u>

Coordinate Plane

Coordinate Plane

Congruent Figures

Regular Polygons

Line of Symmetry

Probability and Statistics

Mean

Median

Mode

Range

Circle Graph

Comparing Graphs: Circle and Bar graph

Comparing Graphs: Circle and Pictograph Comparing Graphs: Circle and Line Plot

Patterns, Functions and Algebra

Ratio Table

Proportional Relationship

<u>Unit Rate: Definition</u> Unit Rate: Examples

Connecting Representations

Equation

Expression

<u>Variable</u>

Coefficient

<u>Term</u>

Verbal and Algebraic Expressions and

Equations

<u>Inequality</u>

Ratio

a comparison of any two quantities

▲ to O	4 to 3 or 4:3
\(\Lambda \) to all of set A	4 to 7 or 4:7 or $\frac{4}{7}$
O (set A) to (set B)	3 to 5 or 3:5
set B to set A	9 to 7 or 9:7

Equivalent Relationships

$$56\% = \frac{56}{100} = \frac{14}{25} = 0.56$$

$$2\frac{4}{9} = 2.444... = 244.\overline{4}\%$$

$$1.8 = 180\% = \frac{180}{100} = 1\frac{4}{5}$$

Equivalent Relationships

Fraction:
$$\frac{8}{20} = \frac{2}{5}$$

Decimal: 0.4

Percent: 40%

Absolute Value

distance a number is from zero

Perfect Squares

$$0^{2} = 0 \cdot 0 = 0$$
 $1^{2} = 1 \cdot 1 = 1$
 $2^{2} = 2 \cdot 2 = 4$
 $3^{2} = 3 \cdot 3 = 9$
 $4^{2} = 4 \cdot 4 = 16$
 $5^{2} = 5 \cdot 5 = 25$
 $6^{2} = 6 \cdot 6 = 36$
 $7^{2} = 7 \cdot 7 = 49$
 $8^{2} = 8 \cdot 8 = 64$
 $9^{2} = 9 \cdot 9 = 81$
 $10^{2} = 10 \cdot 10 = 100$

Exponential Form

Powers of Ten

Power	Meaning	Value
of Ten		
10 ⁵	$10\cdot 10\cdot 10\cdot 10\cdot 10$	100,000
		One hundred
		thousand
10 ⁴	$10\cdot 10\cdot 10\cdot 10$	10,000
		Ten thousand
10 ³	10 · 10 · 10	1,000
		One thousand
10 ²	10 · 10	100
		One hundred
10 ¹	10	10
		Ten
10 ⁰	1	1
		One

Fraction Multiplication

How much is $\frac{3}{8}$ of $\frac{2}{3}$?

$$\frac{3}{8}$$
 - $\frac{2}{3}$ = $\frac{6}{24}$

$$\frac{3}{8} \cdot \frac{2}{3} = \frac{6}{24} = \frac{1}{4}$$

Fraction Division

$$\frac{3}{4} \div \frac{1}{2}$$

How many halves are in three-fourths?

Fraction Division

$$\frac{3}{4} \div \frac{1}{2}$$

How many halves are in three-fourths?

There are $1\frac{1}{2}$ halves in three-fourths.

$$\frac{3}{4} \div \frac{1}{2} = 1\frac{1}{2}$$

Multiplication and Division of Decimals

Multiplier	Multiply	Value
1	27 · 1	27
0.1	27 · 0.1	2.7
0.01	27 · 0.01	0.27
0.001	27 · 0.001	0.027

Divisor	Divide	Value
1	27 ÷ 1	27
0.1	$27 \div 0.1$	270
0.01	27 ÷ 0.01	2,700
0.001	27 ÷ 0.001	27,000

Comparing Integers

$$-5 < 1 \text{ or } 1 > -5$$

$$-5 < -4 \text{ or } -4 > -5$$

Integer Operations

Addition

$$-5 + 6 = 1$$

Subtraction

$$1 - 6 = -5$$

Integer Operations

Key:
$$\bigcirc$$
 = positive 1 \bigcirc = negative 1

Addition

$$-5 + 6 = 1$$

Subtraction

$$1 - 6 = -5$$

Integer Operations

Multiplication

How many tiles are in 3 groups of -4 tiles?

Division

$$-12 \div -4 = 3$$

How many groups of -4 tiles are in -12 tiles?

Order of Operations

Grouping Symbols

()

_

Exponents

Multiplication
or Division

Left to to right

Addition Left to right

Pi

$$\pi = \frac{\text{circumference}}{\text{diameter}}$$

Circumference

$$C = \pi d$$

$$C = 2\pi r$$

C = perimeter of a circle

Area of a Circle

$$A = \pi r^2$$

Perimeter

the measure of the distance around a figure

Area

the number of square units needed to cover a surface or figure

Area = 12 Square Units

Coordinate Plane

ordered pair (x,y)

Coordinate Plane

What is the length of side AB in the figure ABCD? A(-1,-2) and B(-1,-4)

The length of AB is |-2 - (-4)| or |-4 - (-2)| or 2 units.

Congruent Figures

have exactly the same shape and size

Regular Polygons

have congruent sides and congruent interior angles

Line of Symmetry

divides a figure into two congruent parts, each of which are mirror images of the other

Mean

a measure of central tendency (the numerical average of a data set)

2, 3, 4, 7

Balance Point

$$\frac{2+3+4+7}{4} = \frac{16}{4} = 4$$

Median

a measure of central tendency (the middle value of a data set ranked in order)

Mode

a measure of central tendency (the data value that occurs most frequently)

Data Sets	Mode
2, 3, 3, 3, 5, 5, 9, 10	3
5.2, 5.4, 5.5, 5.6, 5.8, 5.9, 6.0	none
1, 1, 2, 5, 6, 7, 7, 9, 11, 12	1, 7 1

bimodal

Range

difference between the greatest and least values in a data set

Data set

$$2\frac{1}{2}$$
, 3, $3\frac{3}{4}$, $3\frac{7}{8}$, 5, $5\frac{1}{2}$, $9\frac{1}{6}$, $10\frac{4}{5}$, $15\frac{1}{2}$, 20

$$20-2\frac{1}{2}=17\frac{1}{2}$$

Range =
$$17\frac{1}{2}$$

Circle Graph

Types of Animals on Mr. Segal's Farm

Comparing Graphs

Types of Animals on Mr. Segal's Farm

ost common on Mr. Segal's farm? Segal's farm?

r of animals on Mr. Segal's farm? f animals there are 3 or more?

nimals with four legs?

Number of Animals

Comparing Graphs

Types of Animals on Mr. Segal's Farm

Which graph(s) shows the type of animal t Which graph(s) shows how many pigs are

Which graph(s) help(s) determine for which type of animals there are 3 or more?

Which graph(s) help(s) determine the percent of animals with four legs?

1 animal

Comparing Graphs

Types of Animals on Mr. Segal's Farm

ost common on Mr. Segal's farm? Segal's farm?

r of animals on Mr. Segal's farm?

f animals there are 3 or more?

nimals with four legs?

Ratio Table

a table of values representing a proportional relationship that includes pairs of equivalent ratios

The ratio of *y* to *x* in a proportional relationship is 8:4, create a ratio table.

X	у
1	2
2	4
3	6
4	8
11	22

$$\frac{y}{x} = \frac{2}{1} = \frac{6}{3} = \frac{8}{4} = \frac{22}{11}$$

Proportional Relationship Ratio Table Example

Terry's neighbor pays him \$17 for every 2 hours he works. Terry works for 8 hours on Saturday.

A ratio table represents the proportional relationship:

Hours	1	2	4	8
Pay in \$?	17	34	?

How much does Terry earn per hour?

$$\frac{17}{2} = \frac{?}{1}$$
 Terry earns \$8.50 per hour

How much will Terry earn in 8 hours? $\$8.50 \cdot 8 = 68.00$ He will earn \$68.00 in 8 hours.

Unit Rate

number of units of the first quantity of a ratio compared to 1 unit of the second quantity

Example: A store advertises \$25 for 5 DVDs. Find the cost for 1 DVD or unit rate.

$$\frac{25}{5} = \frac{?}{1}$$

The unit rate is \$5.00 for 1 DVD

Unit Rate Examples

\$2 per gallon =
$$\frac{$2}{1 \text{ gallon}}$$

70 miles per hour =
$$\frac{70 \text{ miles}}{1 \text{ hour}}$$

Connecting Representations

The ratio of gallons of yellow paint to gallons of blue paint is 3:1.

Find three equivalent ratios.

Equation

a mathematical sentence stating that two expressions are equal

$$-38 = y - (-21)$$

$$\frac{1}{2}x = -16$$

Expression

a representation of quantity

16

X

$$2 + 3^4$$

$$3(2+3.9)-\frac{8}{9}$$

Variable

a symbol used to represent an unknown quantity

y

$$3 + x = 2.08$$

$$A = \pi r^2$$

Coefficient

the numerical factor in a term

$$(-4) = 2x$$

$$a = -5$$

Term

a number, variable, product, or quotient in an expression of sums and/or differences

$$3y^2 + 2y - 8$$

3 terms

$$-5x + (-2)$$

2 terms

$$\frac{2}{3}a$$

1 term

Verbal and Algebraic Expressions and Equations

Verbal	Algebraic	
A number multiplied by 5	5 <i>n</i>	
The sum of negative two and a number	-2 + n	
The sum of a number and two is five	y + 2 = 5	
Negative three is one- fifth of a number	$-3 = \frac{1}{5}x$	

Inequality

$$y < 4 \text{ or } 4 > y$$

$$\longleftrightarrow \qquad \qquad \downarrow \qquad \qquad$$

$$x + (-5) \ge -7$$
$$x \ge -2$$

