$$
\begin{aligned}
& \text { Warm Up } \\
& \text { 1. } 2 \frac{1}{6} \times \frac{3}{5} \times \frac{5}{6} \\
& \text { 5. } \frac{1}{2} \times 3 \frac{3}{4} \times \frac{17}{5} \\
& 2 . \frac{1}{3} \times \frac{4}{7} \times 3 \frac{3}{4} \\
& \text { 6. } \frac{1}{3} \times 1 \frac{2}{3} \times \frac{12}{7} \\
& \text { 3. } 1 \frac{1}{6} \times \frac{2}{3} \times 2 \frac{1}{5} \\
& \text { ․ } \frac{2}{3} \times 3 \frac{3}{7} \times 1 \frac{1}{2}
\end{aligned}
$$

Learning Objective: Students will be able to use properties to show that expressions are equivalent.

Warm Up Answers

1. $2 \frac{1}{6} \times \frac{3}{5} \times \frac{5}{6}$
$=\frac{13}{12}=1 \frac{1}{12}$
2. $\begin{aligned} & \frac{1}{2} \times 3 \frac{3}{4} \times \frac{17}{5} \\ = & \frac{51}{8}=6 \frac{3}{8}\end{aligned}$
3. $\frac{1}{3} \times \frac{4}{7} \times 3 \frac{3}{4}$
$=\frac{5}{7}$
4. $\frac{1}{3} \times 1 \frac{2}{3} \times \frac{12}{7}$
$=\frac{20}{21}$
5. $1 \frac{1}{6} \times \frac{2}{3} \times 2 \frac{1}{5}$
$=\frac{77}{45}=1 \frac{32}{45}$

$$
\text { 7. } \begin{aligned}
& \frac{2}{3} \times 3 \frac{3}{7} \times 1 \frac{1}{2} \\
& =\frac{24}{7}=3 \frac{3}{7}
\end{aligned}
$$

Essential Question:

Does the order in which you perform an operation matter?

Lesson 3.3

Lesson Objective:

Students will be able to:
use properties to show that expressions are equivalent.

Self-Evaluation Scale

ScOre	I can teach other students how to use properties to show that expressions are equivalent.
3	I can use properties to show that expressions are equivalent.
2	expressions are equivalent.
$\mathbf{1}$	I do not know how to use properties to show that expressions are equivalent.
1	

ACTIVITY: Does Order Matter?

Work with a partner. Place each statement in the correct oval.
a. Fasten 5 shirt buttons.
b. Put on a shirt and tie.
c. Fill and seal an envelope.
d. Floss your teeth.
e. Put on your shoes.

Order Matters

f. Chew and swallow.

Equivalent Expressions

Expressions with the same value

UNIVERSTITY OF TIVE

Learning Objective: Students will be able to use properties to show that expressions are equivalent.

Commutative Properties

Words Changing the order of addends or factors does not change the sum or product.

$$
\begin{aligned}
& \text { Numbers } 5+8=8+5 \\
& 5 \cdot 8=8 \cdot 5 \\
& \text { Algebra } \\
& a+b=b+a \\
& a \cdot b=b \cdot a
\end{aligned}
$$

Law Offices of
 Tomei, Tomei, and
 Associates

Commutative Properties

Words Changing the order of addends or factors does not change the sum or product.
Numbers $\quad \begin{aligned} 5+8 & =8+5 \\ 5 \cdot 8 & =8 \cdot 5\end{aligned} \quad$ Algebra $\quad \begin{aligned} a+b & =b+a \\ a \cdot b & =b \cdot a\end{aligned}$

$$
5 \cdot 8=8 \cdot 5 \quad a \cdot b=b \cdot a
$$

Associative Properties

Words Changing the grouping of addends or factors does not change the sum or product.
Numbers $(7+4)+2=7+(4+2)$
$(7 \cdot 4) \cdot 2=7 \cdot(4 \cdot 2)$
Algebra $(a+b)+c=a+(b+c)$

$$
(a \cdot b) \cdot c=a \cdot(b \cdot c)
$$

1 Using Properties to Write Equivalent Expressions

a. Simplify the expression $7+(12+x)$.

$$
\begin{aligned}
7+(12+x) & =(7+12)+x & & \text { Associative Property of Addition } \\
& =19+x & & \text { Add 7 and } 12 .
\end{aligned}
$$

b. Simplify the expression $(6.1+x)+8.4$.

$$
\begin{aligned}
(6.1+x)+8.4 & =(x+6.1)+8.4 & & \text { Commutative Property of Addition } \\
& =x+(6.1+8.4) & & \text { Associative Property of Addition } \\
& =x+14.5 & & \text { Add 6.1 and 8.4. }
\end{aligned}
$$

c. Simplify the expression 5 (11y).

$$
\begin{aligned}
5(11 y) & =(5 \cdot 11) y & & \text { Associative Property of Multiplication } \\
& =55 y & & \text { Multiply } 5 \text { and } 11 .
\end{aligned}
$$

Essential Question:

Does the order in which you perform an operation matter?

Lesson 3.3

Lesson Objective:

Students will be able to:
use properties to show that expressions are equivalent.

Self-Evaluation Scale

ScOre	I can teach other students how to use properties to show that expressions are equivalent.
3	I can use properties to show that expressions are equivalent.
2	expressions are equivalent.
$\mathbf{1}$	I do not know how to use properties to show that expressions are equivalent.
1	

