Warm Up

1. $\frac{11}{6}-\frac{13}{15}$
2. $\frac{7}{4}-\frac{7}{9}$
3. $\frac{16}{9}-\frac{4}{5}$

$$
\text { 2. } \frac{7}{5}-\frac{4}{3}
$$

6. $\frac{25}{16}-\frac{4}{3}$
7. $\frac{19}{20}-\frac{1}{2}$

$$
\text { 3. } \frac{13}{7}-\frac{25}{14}
$$

$$
\text { 7. } \frac{23}{20}-\frac{11}{12}
$$

$$
\text { 11. } \frac{4}{3}-\frac{4}{5}
$$

Learning Objective: Students will be able to use a net to find the surface area of a prism.

Warm Up Answers

1. $\frac{11}{6}-\frac{13}{15}$
2. $\frac{7}{4}-\frac{7}{9}$
$=\frac{29}{30}$
$=\frac{35}{36}$
3. $\frac{16}{9}-\frac{4}{5}$
$=\frac{44}{45}$
4. $\frac{7}{5}-\frac{4}{3}$
$=\frac{1}{15}$
5. $\frac{25}{16}-\frac{4}{3}$
6. $\frac{19}{20}-\frac{1}{2}$
$=\frac{11}{48}$
$=\frac{9}{20}$

$$
\text { 3. } \begin{gathered}
\frac{13}{7}-\frac{25}{14} \\
=\frac{1}{14}
\end{gathered}
$$

7. $\begin{aligned} & \frac{23}{20}-\frac{11}{12} \\ & =\frac{7}{30}\end{aligned}$
8. $\frac{4}{3}-\frac{4}{5}$
$=\frac{8}{15}$

Essential Question:

How can you find the area of the entire surface of a prism?

Lesson Objective:

Students will be able to:
use a net to find the surface area of a prism.

Self-Evaluation Scale

O	Description
4	I can teach other students how to use a net to find the surface area of a prism.
3	I can use a net to find the surface area of a prism.
2	I recognize, but still need help to use a net to find the surface area of a prism.
1	I do not know how to use a net to find the surface area of a prism.

GO Key Ideas

Prisms

A prism is a polyhedron that has two parallel, identical bases. The lateral faces are parallelograms.

Pyramids

A pyramid is a polyhedron that has one base. The lateral faces are triangles.

Triangular Prism

Rectangular Pyramid

GO Key Idea

Net of a Rectangular Prism

A rectangular prism is a prism with rectangular bases.

EXAMPLE (1 Finding the Surface Area of a Rectangular Prism

Find the surface area of the rectangular prism.

Use a net to find the area of each face.

Find the sum of the areas of the faces.

$$
\begin{aligned}
\text { Surface } & =\frac{\text { Area of }}{\text { top }}+\frac{\text { Area of }}{\text { bottom }}+\frac{\text { Area of }}{\text { front }}+\frac{\text { Area of }}{\text { back }}+\frac{\text { Area of }}{\text { a side }}+\frac{\text { Area of }}{\text { a side }} \\
S & =28+28+21+12+12 \\
& =122
\end{aligned}
$$

\therefore So, the surface area is 122 square inches.

©O Key Idea

Net of a Triangular Prism

A triangular prism is a prism with triangular bases.

EXAMPLE 2 Finding the Surface Area of a Triangular Prism

Find the surface area of the triangular prism.
Use a net to find the area of each face.

Bottom:	$12 \cdot 8=96$
Front:	$\frac{1}{2} \cdot 12 \cdot 5=30$
Back:	$\frac{1}{2} \cdot 12 \cdot 5=30$
Side:	$13 \cdot 8=104$
Side:	$8 \cdot 5=40$

Find the sum of the areas of the faces.

$$
\begin{aligned}
\text { Surface } & =\frac{\text { Area of }}{\text { bottom }}+\frac{\text { Area of }}{\text { front }}+\frac{\text { Area of }}{\text { back }}+\frac{\text { Area of }}{\text { a side }}+\frac{\text { Area of }}{\text { a side }} \\
S & =96+30+30+104+40=300
\end{aligned}
$$

\therefore So, the surface area is 300 square centimeters.

Find the surface area of the rectangular prism.

Find the surface area of the triangular prism.

5.

Assignment

Complete problems:
6, 8, I0, I2, I4, I6
on pages 364-365 in your Big Ideas Text Book.

Assignment Answers

6. $130 \mathrm{ft}^{2}$

8. $76 \mathrm{yd}^{2}$

10. $740 \mathrm{~m}^{2}$
11. 448 in. ${ }^{2}$; The surface area of the box is 448 square inches, so that is the least amount of paper needed to cover the box.
12. $83 \mathrm{ft}^{2}$
13. 2 qt

Homework

In your Big Ideas Record and Practice Journal page I88.

