


6. $\frac{1}{3} \times 1\frac{2}{3} \times \frac{12}{7}$ = $\frac{20}{21}$

3. $1\frac{1}{6} \times \frac{2}{3} \times 2\frac{1}{5}$ = $\frac{77}{45} = 1\frac{32}{45}$

7.
$$\frac{2}{3} \times 3\frac{3}{7} \times 1\frac{1}{2}$$

= $\frac{24}{7} = 3\frac{3}{7}$

Learning Objective: Students will be able to use properties to show that expressions are equivalent.

Lesson 3.3

November 7, 2014

Essential Question:

Does the order in which you perform an operation matter?

Lesson 3.3

November 7, 2014

Lesson Objective:

Students will be able to:

use properties to show that expressions are equivalent.

Self-Evaluation Scale

Score	Description
4	I can teach other students how to use properties to show that expressions are equivalent.
3	I can use properties to show that expressions are equivalent.
2	I recognize, but still need help to use properties to show that expressions are equivalent.
1	I do not know how to use properties to show that expressions are equivalent.

ACTIVITY: Does Order Matter?

Work with a partner. Place each statement in the correct oval.

- a. Fasten 5 shirt buttons.
- c. Fill and seal an envelope.
- e. Put on your shoes.

Order Matters

- b. Put on a shirt and tie.
- d. Floss your teeth.
- f. Chew and swallow.

Order Doesn't Matter

Learning Objective: Students will be able to use properties to show that expressions are equivalent.

Equivalent Expressions

Expressions with the same value

Learning Objective: Students will be able to use properties to show that expressions are equivalent.

UNIVERSTITY OF TIVE

Commutative Properties

- Words Changing the order of addends or factors does not change the sum or product.
- Numbers
 5 + 8 = 8 + 5 Algebra
 a + b = b + a

 $5 \cdot 8 = 8 \cdot 5$ $a \cdot b = b \cdot a$

Law Offices Tomei, Tomei, and Associates

Associative Properties

Words Changing the grouping of addends or factors does not change the sum or product.

Numbers (7+4) + 2 = 7 + (4+2)

$$(7 \cdot 4) \cdot 2 = 7 \cdot (4 \cdot 2)$$

Algebra (a + b) + c = a + (b + c) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

Using Properties to Write Equivalent Expressions

- a. Simplify the expression 7 + (12 + x).
 - 7 + (12 + x) = (7 + 12) + x = 19 + xAssociative Property of Addition Add 7 and 12.
- b. Simplify the expression (6.1 + x) + 8.4.
 - (6.1 + x) + 8.4 = (x + 6.1) + 8.4 Commutative Property of Addition
 - = x + (6.1 + 8.4) Associative Property of Addition
 - = x + 14.5 Add 6.1 and 8.4.
- c. Simplify the expression 5(11*y*).
 - $5(11y) = (5 \cdot 11)y$ = 55y

Associative Property of Multiplication Multiply 5 and 11.

GO Key Ideas					
Addition	Property of Zer	0			
Words 7	The sum of any	number and 0 is	that number.		
Numbers	7 + 0 = 7	Algebra	a + 0 = a		
Multiplication Properties of Zero and One					
Words 7	Words The product of any number and 0 is 0.				
1	The product of	any number and	1 is that number.		
Numbers	$9 \cdot 0 = 0$	Algebra	$a \cdot 0 = 0$		
	$4 \cdot 1 = 4$		$a \cdot 1 = a$		

2 Using Properties to Write Equivalent Expressions				
a. Simplify the expression 9 • 0 •	р.			
$9 \cdot 0 \cdot p = (9 \cdot 0) \cdot p$	Associative Property of Multiplication			
$= 0 \cdot \mathbf{p} = 0$	Multiplication Property of Zero			
b. Simplify the expression $4.5 \cdot r$	• 1.			
$4.5 \cdot r \cdot 1 = 4.5 \cdot (r \cdot 1)$	Associative Property of Multiplication			
$= 4.5 \cdot r$	Multiplication Property of One			
= 4.5r				

Assignment

Complete problems 6, 8, 10, 14, 20, 22, 26, 28, & 34 on pages 130 - 131 in your Big Ideas Text Book.

e

 $(3k + 4\frac{1}{5}) + 8\frac{3}{5}$ $3k + (4\frac{1}{5} + 8\frac{3}{5})$ 3かりは、

Learning Objective: Students will be able to use properties to show that expressions are equivalent.

Lesson 3.3

November 7, 2014

Essential Question:

Does the order in which you perform an operation matter?

Lesson 3.3

November 7, 2014

Lesson Objective:

Students will be able to:

use properties to show that expressions are equivalent.

Self-Evaluation Scale

Score	Description
4	I can teach other students how to use properties to show that expressions are equivalent.
3	I can use properties to show that expressions are equivalent.
2	I recognize, but still need help to use properties to show that expressions are equivalent.
1	I do not know how to use properties to show that expressions are equivalent.

Homework

In your Big Ideas Record and Practice Journal page 68.