$$
\begin{aligned}
& \text { Warm Up } \\
& \text { 1. } 2 \frac{1}{6} \times \frac{3}{5} \times \frac{5}{6} \\
& \text { 5. } \frac{1}{2} \times 3 \frac{3}{4} \times \frac{17}{5} \\
& 2 . \frac{1}{3} \times \frac{4}{7} \times 3 \frac{3}{4} \\
& \text { 6. } \frac{1}{3} \times 1 \frac{2}{3} \times \frac{12}{7} \\
& \text { 3. } 1 \frac{1}{6} \times \frac{2}{3} \times 2 \frac{1}{5} \\
& \text { ․ } \frac{2}{3} \times 3 \frac{3}{7} \times 1 \frac{1}{2}
\end{aligned}
$$

Warm Up Answers

1. $2 \frac{1}{6} \times \frac{3}{5} \times \frac{5}{6}$
2. $\frac{1}{2} \times 3 \frac{3}{4} \times \frac{17}{5}$
$=\frac{13}{12}=1 \frac{1}{12}$ $=\frac{51}{8}=6 \frac{3}{8}$
3. $\frac{1}{3} \times \frac{4}{7} \times 3 \frac{3}{4}$
$=\frac{5}{7}$
4. $\frac{1}{3} \times 1 \frac{2}{3} \times \frac{12}{7}$
$=\frac{20}{21}$
5. $\begin{aligned} & 1 \frac{1}{6} \times \frac{2}{3} \times 2 \frac{1}{5} \\ & =\frac{77}{45}=1 \frac{32}{45}\end{aligned}$
6. $\frac{2}{3} \times 3 \frac{3}{7} \times 1 \frac{1}{2}$
$=\frac{24}{7}=3 \frac{3}{7}$

Essential Question:

Does the order in which you perform an operation matter?

Lesson Objective:

Students will be able to:
use properties to show that expressions are equivalent.

Self-Evaluation Scale

Score	I can teach other students how to use properties to show that expressions are equivalent.
3	I can use properties to show that expressions are equivalent. 2
1	I recognize, but still need help to use properties to show that I do not know how to use properties to show that expressions are
1	equivalent.

1 ACTIVITY: Does Order Matter?

Work with a partner. Place each statement in the correct oval.
a. Fasten 5 shirt buttons.
b. Put on a shirt and tie.
c. Fill and seal an envelope.
d. Floss your teeth.
e. Put on your shoes.

Order Matters

f. Chew and swallow.

Equivalent Expressions

Expressions with the same value

UNIVERSTITY OF
 TIVE

Learning Objective: Students will be able to use properties to show that expressions are equivalent.

Commutative Properties

Words Changing the order of addends or factors does not change the sum or product.

$$
\text { Numbers } \begin{aligned}
5+8 & =8+5 \\
5 \cdot 8 & =8 \cdot 5
\end{aligned} \quad \text { Algebra } \quad \begin{aligned}
a+b & =b+a \\
a \cdot b & =b \cdot a
\end{aligned}
$$

Law

 Tomei, Tomei,

and

 Associates
Associative Properties

Words Changing the grouping of addends or factors does not change the sum or product.

$$
\begin{aligned}
\text { Numbers } \left.\quad \begin{array}{rl}
(7+4)+2 & =7+(4+2) \\
(7 \cdot 4) \cdot 2 & =7 \cdot(4 \cdot 2) \\
\text { Algebra } \quad(a+b)+c & =a+(b+c) \\
(a \cdot b) \cdot c & =a \cdot(b \cdot c)
\end{array}\right)
\end{aligned}
$$

1 Using Properties to Write Equivalent Expressions

a. Simplify the expression $7+(12+x)$.

$$
\begin{aligned}
7+(12+x) & =(7+12)+x & & \text { Associative Property of Addition } \\
& =19+x & & \text { Add } 7 \text { and } 12 .
\end{aligned}
$$

b. Simplify the expression $(6.1+x)+8.4$.

$$
\begin{aligned}
(6.1+x)+8.4 & =(x+6.1)+8.4 & & \text { Commutative Property of Addition } \\
& =x+(6.1+8.4) & & \text { Associative Property of Addition } \\
& =x+14.5 & & \text { Add 6.1 and 8.4. }
\end{aligned}
$$

c. Simplify the expression $\mathbf{5}(11 y)$.

$$
\begin{aligned}
5(11 y) & =(5 \cdot 11) y & & \text { Associative Propert } \\
& =55 y & & \text { Multiply } 5 \text { and } 11 .
\end{aligned}
$$

©O Key Ideas
Addition Property of Zero Words The sum of any number and 0 is that number.

Numbers $7+0=7$

Algebra $a+0=a$
Multiplication Properties of Zero and One
Words The product of any number and 0 is 0 .
The product of any number and 1 is that number.
Numbers $9 \cdot 0=0$
Algebra

$$
\begin{aligned}
& a \cdot 0=0 \\
& a \cdot 1=a
\end{aligned}
$$

multiphertive Identity

2 Using Properties to Write Equivalent Expressions
a. Simplify the expression $9 \cdot 0 \cdot p$.

$$
\begin{aligned}
9 \cdot 0 \cdot p & =(9 \cdot 0) \cdot p & & \text { Associative Property of Multiplication } \\
& =0 \cdot p=0 & & \text { Multiplication Property of Zero }
\end{aligned}
$$

b. Simplify the expression $4.5 \cdot r \cdot 1$.

$$
\begin{aligned}
4.5 \cdot r \cdot 1 & =4.5 \cdot(r \cdot 1) & & \text { Associative Property of Multiplication } \\
& =4.5 \cdot r & & \text { Multiplication Property of One } \\
& =4.5 r & &
\end{aligned}
$$

Assignment

Complete problems 6, 8, IO, I4, 20, 22, 26, 28, \& 34 on pages I30-I3I in your Big Ideas Text Book.

November 7, 2014 Period 5 Lesson 3.3

Essential Question:

Does the order in which you perform an operation matter?

Lesson Objective:

Students will be able to:
use properties to show that expressions are equivalent.

Self-Evaluation Scale

Score	I can teach other students how to use properties to show that expressions are equivalent.
3	I can use properties to show that expressions are equivalent. 2
1	I recognize, but still need help to use properties to show that I do not know how to use properties to show that expressions are
1	equivalent.

Homework

In your Big Ideas Record and Practice Journal page 68.

