54

 $\times 70$

$$\begin{array}{ccc} 34 & 70 \\ \times 62 & \times 67 \end{array}$$

Warm Up Answers

Lesson 2.1 October 1, 2014

Essential Question:

What does it mean to multiply fractions?

Lesson 2.1

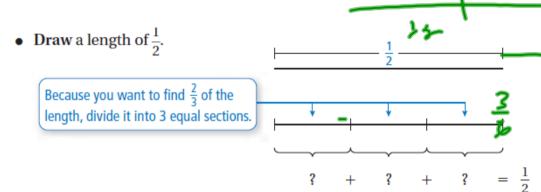
October 1, 2014

Lesson Objective:

Students will be able to:

use a visual model and a formal process for multiplying fractions.

Self-Evaluation Scale

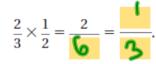

Score	Description
4	I can teach other students how to use a visual model and a formal process for multiplying fractions.
3	I can use a visual model and a formal process for multiplying fractions.
2	I recognize, but still need help to use a visual model and a formal process for multiplying fractions.
1	I do not know how to use a visual model and a formal process for multiplying fractions.

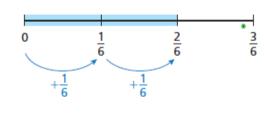
Activity 1

With a partner, work on Activity I on pages 3I of your Big Ideas Record and Practice Journal.

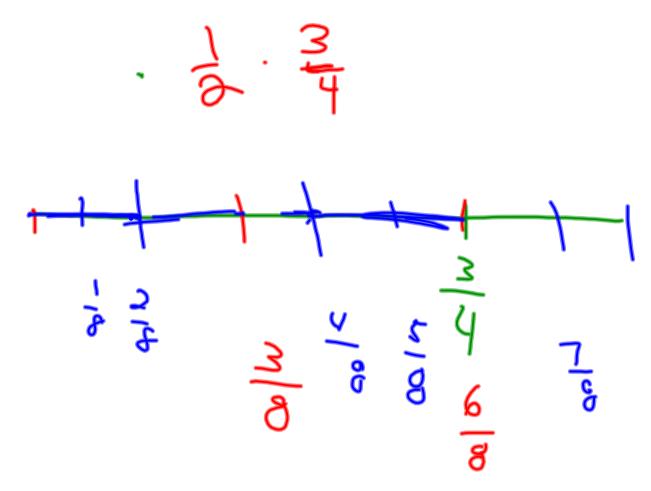
October 1, 2014 - 2014 Period 4 Lesson 2.1

Learning Objective: Students will be able to use a visual model and a formal process for multiplying fractions.

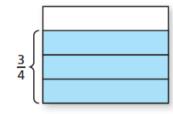

Now, you need to think of a way to divide $\frac{1}{2}$ into 3 equal parts.


• Rewrite $\frac{1}{2}$ as a fraction whose numerator is divisible by 3.

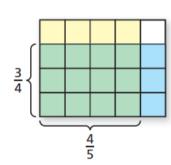
Because the length is divided into 3 equal sections, multiply the numerator and denominator by 3.


In this form, you see that $\frac{3}{6}$ can be divided into 3 equal parts of $\frac{1}{6}$.

• Each part is $\frac{1}{6}$ of the bottle of water, and you drank two of them. Written as multiplication, you have

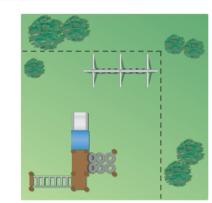


So, you drank of the bottle of water.



$$20.10 = 200$$
 $10.10 = 100$
 $5.10 = 50$
 $1.10 = 10$
 $5.10 = 5$
 $1.10 = 10$

2 **ACTIVITY:** Multiplying Fractions



Work with a partner. A park has a playground that is $\frac{3}{4}$ of its width and $\frac{4}{5}$ of its length. What fraction of the park is covered by the playground?

Fold a piece of paper horizontally into fourths and shade three of the fourths to represent $\frac{3}{4}$.

Fold the paper vertically into fifths and shade $\frac{4}{5}$ of the paper another color.

Count the total number of squares. This number is the denominator. The numerator is the number of squares shaded with both colors.

$$\frac{3}{4} \times \frac{4}{5} = \frac{3}{30} = \frac{3}{5}$$
. So, of the park is covered by the playground.

IN YOUR OWN WORDS What does it mean to multiply fractions?

Multiplying Fractions

Words Multiply the numerators and multiply the denominators.

Numbers
$$\frac{3}{7} \times \frac{1}{2} = \frac{3 \times 1}{7 \times 2} = \frac{3}{14}$$

Numbers
$$\frac{3}{7} \times \frac{1}{2} = \frac{3 \times 1}{7 \times 2} = \frac{3}{14}$$

Algebra $\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$, where $b, d \neq 0$

1 Multiplying Fractions

Find
$$\frac{1}{5} \times \frac{1}{3}$$
.

$$\frac{1}{5} \times \frac{1}{3} = \frac{1 \times 1}{5 \times 3}$$
Multiply the numerators.

$$= \frac{1}{15}$$
Multiply the denominators.

Simplify.

2 Multiplying Fractions with Common Factors

Find
$$\frac{8}{9} \times \frac{3}{4}$$
.

Estimate $1 \times \frac{3}{4} = \frac{3}{4}$

Multiply the numerators.

Multiply the denominators.

$$= \frac{8 \times 3}{9 \times 4}$$

Divide out common factors.

$$= \frac{2}{3}$$

Simplify.

- $\therefore \text{ The product is } \frac{2}{3}.$
- Reasonable? $\frac{2}{3} \approx \frac{3}{4}$

On Your Own

Multiply. Write the answer in simplest form.

1.
$$\frac{1}{2} \times \frac{5}{6}$$

2.
$$\frac{7}{8} \times \frac{1}{4}$$

1.
$$\frac{1}{2} \times \frac{5}{6}$$
 2. $\frac{7}{8} \times \frac{1}{4}$ 3. $\frac{3}{7} \times \frac{2}{3}$ 2. $\frac{4}{9} \times \frac{3}{10}$

4 Multiplying a Fraction and a Mixed Number

Find
$$\frac{1}{2} \times 2\frac{3}{4}$$
.

Estimate $\frac{1}{2} \times 3 = 1\frac{1}{2}$

$$\frac{1}{2} \times 2\frac{3}{4} = \frac{1}{2} \times \frac{11}{4}$$
Write $2\frac{3}{4}$ as the improper fraction $\frac{11}{4}$.

$$= \frac{1 \times 11}{2 \times 4}$$
Multiply the numerators and the denominators.
$$= \frac{11}{8}, \text{ or } 1\frac{3}{8}$$
Simplify.

$$Arr$$
 The product is $1\frac{3}{8}$. Reasonable? $1\frac{3}{8} \approx 1\frac{1}{2}$

Multiplying Mixed Numbers

Find
$$1\frac{4}{5} \times 3\frac{2}{3}$$
.

Estimate
$$2 \times 4 = 8$$

$$1\frac{4}{5} \times 3\frac{2}{3} = \frac{9}{5} \times \frac{11}{3}$$

$$1\frac{4}{5} \times 3\frac{2}{3} = \frac{9}{5} \times \frac{11}{3}$$
 Write $1\frac{4}{5}$ and $3\frac{2}{3}$ as improper fractions.

$$=\frac{\cancel{8}\times11}{5\times\cancel{8}_{1}}$$

Multiply fractions. Divide out the common factor 3.

$$=\frac{33}{5}$$
, or $6\frac{3}{5}$

Simplify.

$$\therefore$$
 The product is $6\frac{3}{5}$. Reasonable? $6\frac{3}{5} \approx 8$

Reasonable?
$$6\frac{3}{5} \approx 8$$

On Your Own

Multiply. Write the answer in simplest form.

6.
$$\frac{1}{3} \times 1\frac{1}{6}$$

7.
$$3\frac{1}{2} \times \frac{4}{9}$$

8.
$$1\frac{7}{8} \times 2\frac{2}{5}$$

6.
$$\frac{1}{3} \times 1\frac{1}{6}$$
 7. $3\frac{1}{2} \times \frac{4}{9}$ **8.** $1\frac{7}{8} \times 2\frac{2}{5}$ **9.** $5\frac{5}{7} \times 2\frac{1}{10}$

Assignment

Complete problems 8, 14, 18, 19, 35, 39, 40, 41, 54, 55, & 58 on pages 59 - 61 in your Big Ideas Text Book.

Lesson 2.1 October 1, 2014

Essential Question:

What does it mean to multiply fractions?

Lesson 2.1

October 1, 2014

Lesson Objective:

Students will be able to:

use a visual model and a formal process for multiplying fractions.

Self-Evaluation Scale

Score	Description
4	I can teach other students how to use a visual model and a formal process for multiplying fractions.
3	I can use a visual model and a formal process for multiplying fractions.
2	I recognize, but still need help to use a visual model and a formal process for multiplying fractions.
1	I do not know how to use a visual model and a formal process for multiplying fractions.

Homework

In your Big Ideas Record and Practice Journal page 34.