

2. $\frac{4}{9} \times \frac{2}{3}$	6. $\frac{5}{11} \times \frac{1}{3}$	10. $\frac{1}{8} \times \frac{1}{4}$
9 3	11 3	8 4

2.
$$\frac{4}{9} \times \frac{2}{3}$$

= $\frac{8}{27}$
6. $\frac{5}{11} \times \frac{1}{3}$
= $\frac{5}{33}$
10. $\frac{1}{8} \times \frac{1}{4}$
= $\frac{1}{32}$

Homework Answers 2.2 Record and Practice Journal

Lesson 2.3

October 13, 2015

Essential Question:

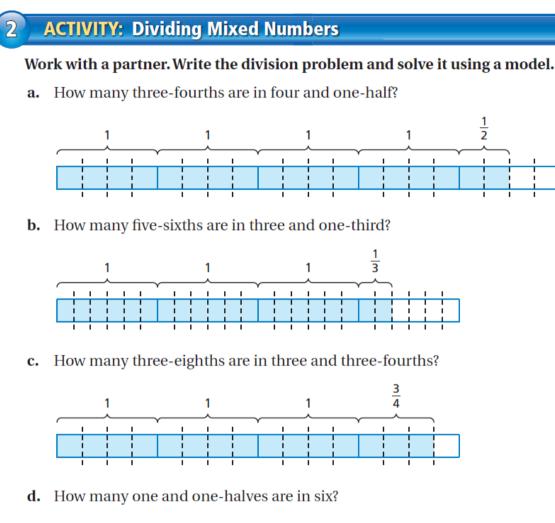
How can you model division by a mixed number?

Lesson 2.3

October 13, 2015

Lesson Objective:

Students will be able to:


use a model and a formal rule to divide with mixed numbers.

Self-Evaluation Scale

Score	Description	
4	I can teach other students how to use a model and a formal rule to divide with mixed numbers.	
3	I can use a model and a formal rule to divide with mixed numbers.	
2	I recognize, but still need help to use a model and a formal rule to divide with mixed numbers.	
1	I do not know how to use a model and a formal rule to divide with mixed numbers.	

Activity 1 & 2

With a partner, work on Activity I & 2 on pages 39 & 40 of your Big Ideas Record and Practice Journal.

- e. How many one and one-fifths are in five?
- f. How many one and one-fourths are in four and one-half?
- g. How many two and one-thirds are in five and five-sixths?

Learning Objective: Students will be able to use a model and a formal rule to divide with mixed numbers.

Dividing Mixed Numbers

Write each mixed number as an improper fraction. Then divide as you would with proper fractions.

2

Learning Objective: Students will be able to use a model and a formal rule to divide with mixed numbers.

Dividing Mixed Numbers

Find
$$3\frac{5}{6} \div 1\frac{2}{3}$$
.
 $3\frac{5}{6} \div 1\frac{2}{3} = \frac{23}{6} \div \frac{5}{3}$
 $= \frac{23}{6} \times \frac{3}{5}$
 $= \frac{23 \times \cancel{3}}{6} \times \frac{3}{5}$
 $= \frac{23 \times \cancel{3}}{\cancel{6} \times 5}^{1}$
 $= \frac{23}{10}, \text{ or } 2\frac{3}{10}$
So, the quotient is $2\frac{3}{10}$.

Estimate $4 \div 2 = 2$

Write each mixed number as an improper fraction.

Multiply by the reciprocal of $\frac{5}{3}$, which is $\frac{3}{5}$.

Multiply fractions. Divide out common factors.

Simplify.

Reasonable? $2\frac{3}{10} \approx 2$

On Your Own

Divide. Write the answer in simplest form.

1.
$$1\frac{3}{7} \div \frac{2}{3}$$
 2. $2\frac{1}{6} \div \frac{3}{4}$ **3.** $8\frac{1}{4} \div 1\frac{1}{2}$ **4.** $6\frac{4}{5} \div 2\frac{1}{8}$

3 Using Order of Operations

Evaluate
$$5\frac{1}{4} \div 1\frac{1}{8} - \frac{2}{3}$$
.
 $5\frac{1}{4} \div 1\frac{1}{8} - \frac{2}{3} = \frac{21}{4} \div \frac{9}{8} - \frac{2}{3}$ Write each $= \frac{21}{4} \times \frac{8}{9} - \frac{2}{3}$ Multiply $= \frac{721 \times 8}{4 \times 8} - \frac{2}{3}$ Multiply $= \frac{721 \times 8}{4 \times 8} - \frac{2}{3}$ Multiply $= \frac{14}{3} - \frac{2}{3}$ Simplify.
 $= \frac{12}{3}$, or 4 Subtract.

Write each mixed number as an improper fraction.

Multiply by the reciprocal of
$$\frac{9}{8}$$
, which is $\frac{8}{9}$.

Multiply
$$\frac{21}{4}$$
 and $\frac{8}{9}$. Divide out common factors.

4 Real-Life Application

One serving of tortilla soup is $1\frac{2}{3}$ cups. A restaurant cook makes 50 cups of soup. Is there enough to serve 35 people? Explain. Divide 50 by $1\frac{2}{3}$ to find the number of available servings. $50 \div 1\frac{2}{3} = \frac{50}{1} \div \frac{5}{3}$ Rewrite each number as an improper fraction. $= \frac{50}{1} \cdot \frac{3}{5}$ Multiply by the reciprocal of $\frac{5}{3}$, which is $\frac{3}{5}$. $= \frac{10}{50} \cdot \frac{3}{1 \cdot \frac{5}{1}}$ Multiply fractions. Divide out common factors. = 30 Simplify.

No. Because 30 is less than 35, there is not enough soup to serve 35 people.

On Your Own

Evaluate the expression. Write the answer in simplest form.

- 5. $1\frac{1}{2} \div \frac{1}{6} \frac{7}{8}$ 6. $3\frac{1}{3} \div \frac{5}{6} + \frac{8}{9}$ 7. $\frac{2}{5} + 2\frac{4}{5} \div 1\frac{3}{4}$ 8. $\frac{2}{3} - 1\frac{4}{7} \div 4\frac{5}{7}$
- 9. In Example 4, can 30 cups of tortilla soup serve 15 people? Explain.

Learning Objective: Students will be able to use a model and a formal rule to divide with mixed numbers.

Assignment

Complete problems: 5, 10, 15, 20, 23, 24, 26, 30, 34, & 39 on pages 74 & 75 in your Big Ideas Text Book.

Learning Objective: Students will be able to use a model and a formal rule to divide with mixed numbers.

October 13, 2015

Lesson 2.3

Essential Question:

How can you model division by a mixed number?

Lesson 2.3

October 13, 2015

Lesson Objective:

Students will be able to:

use a model and a formal rule to divide with mixed numbers.

Self-Evaluation Scale

Score	Description	
4	I can teach other students how to use a model and a formal rule to divide with mixed numbers.	
3	I can use a model and a formal rule to divide with mixed numbers.	
2	I recognize, but still need help to use a model and a formal rule to divide with mixed numbers.	
1	I do not know how to use a model and a formal rule to divide with mixed numbers.	

Homework

In your Big Ideas Record and Practice Journal page 42.