Warm Up

1. $\frac{5}{6} \times \frac{1}{2}$
2. $\frac{7}{9} \times \frac{1}{2}$
3. $\frac{1}{2} \times \frac{1}{3}$
4. $\frac{4}{9} \times \frac{2}{3}$
5. $\frac{5}{11} \times \frac{1}{3}$
6. $\frac{1}{8} \times \frac{1}{4}$

Warm Up Answers

1. $\frac{5}{6} \times \frac{1}{2}$
2. $\frac{7}{9} \times \frac{1}{2}$
$=\frac{7^{2}}{18}$
3. $\frac{1}{2} \times \frac{1}{3}$
$=\frac{1}{6}$

$$
\text { 2. } \frac{4}{9} \times \frac{2}{3}
$$

$$
\text { 6. } \frac{5}{11} \times \frac{1}{3}
$$

$$
=\frac{5}{33}
$$

$$
\text { 10. } \begin{aligned}
& \frac{1}{8} \times \frac{1}{4} \\
&= \frac{1}{32}
\end{aligned}
$$

Homework Answers

2.2 Record and Practice Journal

Essential Question:

How can you model division by a mixed number?

Lesson Objective:

Students will be able to:
use a model and a formal rule to divide with mixed numbers.

Self-Evaluation Scale

ScOre	I can teach other students how to use a model and a formal rule to divide with mixed numbers.
3	I can use a model and a formal rule to divide with mixed numbers.
2	I recognize, but still need help to use a model and a formal rule to divide with mixed numbers.
1	I do not know how to use a model and a formal rule to divide with mixed numbers.
1	

Activity 1 \& 2

With a partner, work on Activity I \& 2 on pages 39 \& 40 of your Big Ideas Record and Practice Journal.

2 ACTIVITY: Dividing Mixed Numbers

Work with a partner. Write the division problem and solve it using a model.
a. How many three-fourths are in four and one-half?

c. How many three-eighths are in three and three-fourths?

e. How many one and one-fifths are in five?
f. How many one and one-fourths are in four and one-half?
g. How many two and one-thirds are in five and five-sixths?

$$
10 \div 5=\frac{10}{1} \cdot \frac{1}{5}: \frac{2}{1}=2
$$

©O Key Idea

Dividing Mixed Numbers

Write each mixed number as an improper fraction. Then divide as you would with proper fractions.

1 Dividing a Mixed Number by a Fraction

Find $2 \frac{1}{4} \div \frac{3}{8}$.

$$
\begin{aligned}
2 \frac{1}{4} \div \frac{3}{8} & =\frac{9}{4} \div \frac{3}{8} & & \text { Write } 2 \frac{1}{4} \text { as the improper fraction } \frac{9}{4} . \\
& =\frac{9}{4} \times \frac{8}{3} & & \text { Multiply by the reciprocal of } \frac{3}{8} \text {, which is } \frac{8}{3} . \\
& =\frac{3 \times 8^{2}}{4 \times Z} & & \text { Multiply fractions. Divide out common fact } \\
& =6 & & \text { Simplify. }
\end{aligned}
$$

Learning Objective: Students will be able to use a model and a formal rule to divide with mixed numbers.

$$
\begin{aligned}
& F_{i r s t}=T 0 十 a l \\
& 2 n t=\operatorname{siz} \text { of groping) }
\end{aligned}
$$

2 Dividing Mixed Numbers

Find $\left(3 \frac{5}{6}\right) 1 \frac{2}{3}$.
$3 \frac{5}{6} \div 1 \frac{2}{3}=\frac{23}{6} \div \frac{5}{3}$
$=\frac{23}{6} \times \frac{3}{5}$
$={\frac{23 \times 3^{1}}{}{ }^{1}}_{6 \times 5}$
$=\frac{23}{10}$, or $2 \frac{3}{10} \quad$ Simplify.
$\therefore \quad$ So, the quotient is $2 \frac{3}{10}$. Reasonable? $2 \frac{3}{10} \approx 2$

On Your Own

Divide. Write the answer in simplest form.

1. $1 \frac{3}{7} \div \frac{2}{3}$
2. $2 \frac{1}{6} \div \frac{3}{4}$
3. $8 \frac{1}{4} \div 1 \frac{1}{2}$
4. $6 \frac{4}{5} \div 2 \frac{1}{8}$
$\frac{10}{7}: 2$
$\frac{56}{7} \frac{3}{x}-\frac{15}{7}=2 \frac{1}{7}$

$$
\begin{aligned}
& \frac{34}{5} \div \frac{17}{8} \\
& \frac{24}{5} \cdot \frac{8}{11}=\frac{16}{5} \cdot 35
\end{aligned}
$$

3 Using Order of Operations

Evaluate $5 \frac{1}{4} \div 1 \frac{1}{8}-\frac{2}{3}$.
$5 \frac{1}{4} \div 1 \frac{1}{8}-\frac{2}{3}=\frac{21}{4} \div \frac{9}{8}-\frac{2}{3} \quad$ Write each mixed number as an improper fraction.
$=\frac{21}{4} \times \frac{8}{9}-\frac{2}{3} \quad$ Multiply by the reciprocal of $\frac{9}{8^{\prime}}$ which is $\frac{8}{9}$.
$=\frac{721 \times 8^{2}}{A \times \mathscr{G}_{3}}-\frac{2}{3} \quad$ Multiply $\frac{21}{4}$ and $\frac{8}{9}$. Divide out common factors.
$=\frac{14}{3}-\frac{2}{3} \quad$ Simplify.
$=\frac{12}{3}$, or $4 \quad$ Subtract.

4 Real-Life Application

One serving of tortilla soup is $1 \frac{2}{3}$ cups. A restaurant cook makes 50 cups of soup. Is there enough to serve 35 people? Explain.

Divide 50 by $1 \frac{2}{3}$ to find the number of available servings.

$$
\begin{aligned}
50 \div 1 \frac{2}{3} & =\frac{50}{1} \div \frac{5}{3} & & \text { Rewrite each number as an improper fraction. } \\
& =\frac{50}{1} \cdot \frac{3}{5} & & \text { Multiply by the reciprocal of } \frac{5}{3}, \text { which is } \frac{3}{5} . \\
& =\frac{10}{1 \cdot 50 \cdot 3} & & \text { Multiply fractions. Divide out common factors. } \\
& =30 & & \text { Simplify. }
\end{aligned}
$$

\therefore No. Because 30 is less than 35 , there is not enough soup to serve 35 people.

On Your Own

Evaluate the expression. Write the answer in simplest form.
5. $1 \frac{1}{2} \div \frac{1}{6}-\frac{7}{8}$
6. $3 \frac{1}{3} \div \frac{5}{6}+\frac{8}{9}$
7. $\frac{2}{5}+2 \frac{4}{5} \div 1 \frac{3}{4}$
8. $\frac{2}{3}-1 \frac{4}{7} \div 4 \frac{5}{7}$
9. In Example 4, can 30 cups of tortilla soup serve 15 people? Explain.

Assignment

Complete problems:
5, IO, I5, 20, 23, 24, 26, 30, 34, \& 39
on pages $74 \& 75$ in your Big Ideas Text Book.

Essential Question:

How can you model division by a mixed number?

Lesson Objective:

Students will be able to:
use a model and a formal rule to divide with mixed numbers.

Self-Evaluation Scale

ScOre	I can teach other students how to use a model and a formal rule to divide with mixed numbers.
3	I can use a model and a formal rule to divide with mixed numbers.
2	I recognize, but still need help to use a model and a formal rule to divide with mixed numbers.
1	I do not know how to use a model and a formal rule to divide with mixed numbers.
1	

Homework

In your Big Ideas Record and Practice Journal page 42 .

