

WarmUp

1.1 Record and Practice Journal

Lesson 1.2

September 5, 2014

Lesson 1.2

September 5, 2014

LessonObjective:

Students will be able to:

at the specific case of perfect squares.

Students will be able to:

at the specific case of perfect squares.

Self-EvaluationScale

Score	Description
4	I can teach other students how to use formal language to describe a power and look at the specific case of perfect squares.
3	I can use formal language to describe a power and look at the specific case of perfect squares.
2	I recognize, but sll need help to use formal language to describe a power and look at the specific case of perfect squares.
1	I do not know how to use formal language to describe a power and look at the specific case of perfect squares.

Activity1,2,&3

With a partner, work on Acvity 1, 2, & 3 on pages 7, 8, & 9 of your Big Ideas Record and Pracce Journal.

A **power** is a product of repeated factors. The **base** of a power is the repeated factor. The **exponent** of a power indicates the number of times the base is used as a factor.

Power	Words
3^2	Three squared, or three to the second
3 ³	Three <u>cub</u> ed, or three to the third
3^4	Three to the fourth Port

Writing Expressions as Powers

Write each product as a power.

a. 4 • 4 • 4 • 4

Because 4 is used as a factor 5 times, its exponent is 5.

- So, $4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 = 4^5$.
- **b.** $12 \times 12 \times 12$

Because 12 is used as a factor 3 times, its exponent is 3.

So, $12 \times 12 \times 12 = 12^3$.

OnYourOwn

Write the product as a power.

- 1. 6 6 6 6 6
- 2. $15 \times 15 \times 15 \times 15$

2 Finding Values of Powers

Find the value of each power.

a.
$$7^2$$
 b. 5^3 $7^2 = 7 \cdot 7$ Write as repeated multiplication. $5^3 = 5 \cdot 5 \cdot 5 \cdot 5 = 49$ Simplify. $5^3 = 125$

The square of a whole number is a perfect square.

 ${\color{blue} \textbf{Learning Objective:}} \textbf{ Students will be able to use formal language to describe a power and look at the specific case of perfect squares.}$

3 Identifying Perfect Squares

Determine whether each number is a perfect square.

- a. 64
 - Because $8^2 = 64$, 64 is a perfect square.
- **b.** 20

No whole number squared equals 20. So, 20 is not a perfect square.

OnYourOwn

Find the value of the power.

3. 6^3 6. 6. 6. 4. 9^2 5. 3^4 6. 18^2 Determine whether the number is a perfect square.

7. 25

8. 2

9. 99

10. 100

Assignment

Complete problems 4, 5, 14, 15, 25, 26, 36, 37, & 38 on pages 14 & 15 in your Big Ideas Text Book.

 ${\color{blue} \textbf{Learning Objective:}} \ \textbf{Students will be able to use formal language to describe a power and look at the specific case of perfect squares.}$

Lesson 1.2

September 5, 2014

Lesson 1.2 September 5, 2014

LessonObjective:

Students will be able to:

use formal language to describe a power and look at the specific case of perfect squares.

Self-EvaluationScale

Score	Description
4	I can teach other students how to use formal language to describe a power and look at the specific case of perfect squares.
3	I can use formal language to describe a power and look at the specific case of perfect squares.
2	I recognize, but sll need help to use formal language to describe a power and look at the specific case of perfect squares.
1	I do not know how to use formal language to describe a power and look at the specific case of perfect squares.

Homework

In your Big Ideas Record and Pracce Journal page 10.