1.1 Record and Practice Journal ``` Find the value of the expression. Use estimation to check your and a. 5684 + 3118 1. 5947 + 2001 2. 2587 + 1654 7948 4241 8802 4. 1596 - 302 6. 9564 - 7581 8. 7094 - 989 1294 1983 6105 a. 8970 ÷ 345 7. 851 + 37 26 23 11. 8549 + 198 12. 74,386 + 874 104 R16 or 43 R35 or 85 R96 or 104\frac{4}{13} 43\frac{35}{198} 85\frac{48}{437} Your family is traveling 345 miles to an annusement park. You have already traveled 131 miles. How many more miles must you travel to the amusement park? 214 miles ``` Lesson 1.2 September 5, 2014 Lesson 1.2 September 5, 2014 # LessonObjective: Students will be able to: use formal language to describe a power and look at the specific case of perfect squares. # Self-EvaluationScale | Score | Description | |-------|---| | 4 | I can teach other students how to use formal language to describe a power and look at the specific case of perfect squares. | | 3 | I can use formal language to describe a power and look at the specific case of perfect squares. | | 2 | I recognize, but sll need help to use formal language to describe a power and look at the specific case of perfect squares. | | 1 | I do not know how to use formal language to describe a power and look at the specific case of perfect squares. | # Activity1,2,&3 With a partner, work on Acvity 1, 2, & 3 on pages 7, 8, & 9 of your Big Ideas Record and Pracce Journal. LearningObjective: Students will be able to use formal language to describe a power and look at the specific case of perfect squares. Proposition of the specific case of perfect squares. A **power** is a product of repeated factors. The **base** of a power is the repeated factor. The **exponent** of a power indicates the number of times the base is used as a factor. power 3 is used as a factor 4 times. | Power | Words | |----------------|--| | 3 ² | Three squared, or three to the second | | 3 ³ | Three <i>cubed</i> , or three to the third | | 3^4 | Three to the fourth Power | Mult = represented addition Powers = reparted mult #### 1 Writing Expressions as Powers Write each product as a power. Because 4 is used as a factor 5 times, its exponent is 5. So, $$4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 = 4^5$$. **b.** $$12 \times 12 \times 12$$ Because 12 is used as a factor 3 times, its exponent is 3. So, $$12 \times 12 \times 12 = 12^3$$. # OnYourOwn Write the product as a power. - 1. 6 6 6 6 6 - **2**. $15 \times 15 \times 15 \times 15$ ### 2 Finding Values of Powers Find the value of each power. **a.** $$7^2$$ **b.** 5^3 $$7^2 = 7 \cdot 7$$ Write as repeated multiplication. $$5^3 = 5 \cdot 5 \cdot 5$$ $$= 49$$ Simplify. $$= 125$$ The square of a whole number is a perfect square. ${\color{blue} \textbf{Learning Objective:}} \textbf{ Students will be able to use formal language to describe a power and look at the specific case of perfect squares.}$ #### 3 Identifying Perfect Squares Determine whether each number is a perfect square. - a. 64 - Because $8^2 = 64$, 64 is a perfect square. - **b.** 20 No whole number squared equals 20. So, 20 is not a perfect square. # 92-9-81 # OnYourOwn Find the value of the power. 3. $$6^3$$ Determine whether the number is a perfect square. $$4) 9.9 = 9^{2}$$ # Assignment Complete problems 4, 5, 14, 15, 25, 26, 36, 37, & 38 on pages 14 & 15 in your Big Ideas Text Book. Lesson 1.2 September 5, 2014 Lesson 1.2 September 5, 2014 # LessonObjective: Students will be able to: use formal language to describe a power and look at the specific case of perfect squares. # Self-EvaluationScale | Score | Description | |-------|---| | 4 | I can teach other students how to use formal language to describe a power and look at the specific case of perfect squares. | | 3 | I can use formal language to describe a power and look at the specific case of perfect squares. | | 2 | I recognize, but sll need help to use formal language to describe a power and look at the specific case of perfect squares. | | 1 | I do not know how to use formal language to describe a power and look at the specific case of perfect squares. | ## Homework In your Big Ideas Record and Pracce Journal page 10. September 5, 2014 Period 5 Lesson 1.2