

1.1 Record and Practice Journal

```
Find the value of the expression. Use estimation to check your and
                                            a. 5684 + 3118
 1. 5947 + 2001
                    2. 2587
                      + 1654
   7948
                       4241
                                             8802
4. 1596 - 302 6. 9564 - 7581 8. 7094
                                              - 989
   1294
                     1983
                                             6105
                                           a. 8970 ÷ 345
7. 851 + 37
                                             26
   23
          11. 8549 + 198
12. 74,386 + 874
   104 R16 or 43 R35 or 85 R96 or
   104\frac{4}{13} 43\frac{35}{198}
                                            85\frac{48}{437}

    Your family is traveling 345 miles to an annusement park. You have already
traveled 131 miles. How many more miles must you travel to the
amusement park?

   214 miles
```

Lesson 1.2

September 5, 2014

Lesson 1.2 September 5, 2014

LessonObjective:

Students will be able to:

use formal language to describe a power and look at the specific case of perfect squares.

Self-EvaluationScale

Score	Description
4	I can teach other students how to use formal language to describe a power and look at the specific case of perfect squares.
3	I can use formal language to describe a power and look at the specific case of perfect squares.
2	I recognize, but sll need help to use formal language to describe a power and look at the specific case of perfect squares.
1	I do not know how to use formal language to describe a power and look at the specific case of perfect squares.

Activity1,2,&3

With a partner, work on Acvity 1, 2, & 3 on pages 7, 8, & 9 of your Big Ideas Record and Pracce Journal.

LearningObjective: Students will be able to use formal language to describe a power and look at the specific case of perfect squares.

Proposition of the specific case of perfect squares.

A **power** is a product of repeated factors. The **base** of a power is the repeated factor. The **exponent** of a power indicates the number of times the base is used as a factor.

power 3 is used as a factor 4 times.

Power	Words
3 ²	Three squared, or three to the second
3 ³	Three <i>cubed</i> , or three to the third
3^4	Three to the fourth Power

Mult = represented addition Powers = reparted mult

1 Writing Expressions as Powers

Write each product as a power.

Because 4 is used as a factor 5 times, its exponent is 5.

So,
$$4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 = 4^5$$
.

b.
$$12 \times 12 \times 12$$

Because 12 is used as a factor 3 times, its exponent is 3.

So,
$$12 \times 12 \times 12 = 12^3$$
.

OnYourOwn

Write the product as a power.

- 1. 6 6 6 6 6
- **2**. $15 \times 15 \times 15 \times 15$

2 Finding Values of Powers

Find the value of each power.

a.
$$7^2$$
 b. 5^3
$$7^2 = 7 \cdot 7$$
 Write as repeated multiplication.
$$5^3 = 5 \cdot 5 \cdot 5$$
$$= 49$$
 Simplify.
$$= 125$$

The square of a whole number is a perfect square.

 ${\color{blue} \textbf{Learning Objective:}} \textbf{ Students will be able to use formal language to describe a power and look at the specific case of perfect squares.}$

3 Identifying Perfect Squares

Determine whether each number is a perfect square.

- a. 64
 - Because $8^2 = 64$, 64 is a perfect square.
- **b.** 20

No whole number squared equals 20. So, 20 is not a perfect square.

92-9-81

OnYourOwn

Find the value of the power.

3.
$$6^3$$

Determine whether the number is a perfect square.

$$4) 9.9 = 9^{2}$$

Assignment

Complete problems 4, 5, 14, 15, 25, 26, 36, 37, & 38 on pages 14 & 15 in your Big Ideas Text Book.

Lesson 1.2

September 5, 2014

Lesson 1.2 September 5, 2014

LessonObjective:

Students will be able to:

use formal language to describe a power and look at the specific case of perfect squares.

Self-EvaluationScale

Score	Description
4	I can teach other students how to use formal language to describe a power and look at the specific case of perfect squares.
3	I can use formal language to describe a power and look at the specific case of perfect squares.
2	I recognize, but sll need help to use formal language to describe a power and look at the specific case of perfect squares.
1	I do not know how to use formal language to describe a power and look at the specific case of perfect squares.

Homework

In your Big Ideas Record and Pracce Journal page 10.

September 5, 2014 Period 5 Lesson 1.2