Warm Up

$$84\overline{)8232}$$

Warm Up Answers

Homework Answers

2-Digit by 2-Digit Multiplication (A) Answers				
Name:	: Date:			
	Cald	ulate each produ	ict.	
264 1760 2024	72 × 19 648 720 1368	48 × 49 432 1920 2352	13 × 90 1170	46 × 16 276 460 736
61 × 10 610	25 × 55 125 1250 1375	45 × 63 135 2700 2835	97 × 41 97 3880 3977	36 × 56 216 1800 2016
48 × 15 240 480 720	77 × 88 616 6160 6776	84 × 84 336 6720 7056	59 × 18 472 590 1062	28 × 25 140 560 700
81 × 30 2430	14 × 57 98 700 798	57 × 51 57 2850 2907	34 × 45 170 1360 1530	99 × 92 198 8910 9108

Lesson 1.2

September 7, 2016

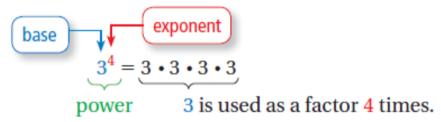
Lesson 1.2

September 7, 2016

Lesson Objective:

Students will be able to:

use formal language to describe a power and look at the specific case of perfect squares.


Self-Evaluation Scale

Score	Description		
4	I can teach other students how to use formal language to describe a power and look at the specific case of perfect squares.		
3	I can use formal language to describe a power and look at the specific case of perfect squares.		
2	I recognize, but still need help to use formal language to describe a power and look at the specific case of perfect squares.		
1	I do not know how to use formal language to describe a power and look at the specific case of perfect squares.		

Activity 1, 2, & 3

With a partner, work on Activity I, 2, & 3 on pages 7, 8, & 9 of your Big Ideas Record and Practice Journal.

A **power** is a product of repeated factors. The **base** of a power is the repeated factor. The **exponent** of a power indicates the number of times the base is used as a factor.

Power	Words	
3 ²	Three squared, or three to the second	
3 ³	Three <i>cubed</i> , or three to the third	
3^4	Three to the fourth	

1 Writing Expressions as Powers

Write each product as a power.

Because 4 is used as a factor 5 times, its exponent is 5.

So,
$$4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 = 4^5$$
.

b.
$$12 \times 12 \times 12$$

Because 12 is used as a factor 3 times, its exponent is 3.

So,
$$12 \times 12 \times 12 = 12^3$$
.

On Your Own

Write the product as a power.

1.
$$6 \cdot 6 \cdot 6 \cdot 6 \cdot 6 \cdot 6$$
 2. $15 \times 15 \times 15 \times 15$

2 Finding Values of Powers

Find the value of each power.

a.
$$7^2$$

b.
$$5^3$$

$$7^2 = 7 \cdot 7$$
 Write as repeated multiplication.

$$5^3 = 5 \cdot 5 \cdot 5$$

$$= 49$$

$$= 125$$

The square of a whole number is a **perfect square**.

3 Identifying Perfect Squares

Determine whether each number is a perfect square.

- a. 64
 - Because $8^2 = 64$, 64 is a perfect square.
- **b.** 20

No whole number squared equals 20. So, 20 is not a perfect square.

On Your Own

Find the value of the power.

3. 6^3

- **4.** 9² **5.** 3⁴ **6.** 18²

Determine whether the number is a perfect square.

7. 25

8. 2

9. 99

10. 100

Assignment

Complete problems 4, 5, 14, 15, 25, 26, 36, 37, & 38 on pages 14 & 15 in your Big Ideas Text Book.

Lesson 1.2

September 16, 2015

Lesson 1.2

September 7, 2016

Lesson Objective:

Students will be able to:

use formal language to describe a power and look at the specific case of perfect squares.

Self-Evaluation Scale

Score	Description		
4	I can teach other students how to use formal language to describe a power and look at the specific case of perfect squares.		
3	I can use formal language to describe a power and look at the specific case of perfect squares.		
2	I recognize, but still need help to use formal language to describe a power and look at the specific case of perfect squares.		
1	I do not know how to use formal language to describe a power and look at the specific case of perfect squares.		

Homework

Worksheet I.I Practice

September 7, 2016 Lesson 1.2