Warm Up

Warm Up Answers

$$\frac{204}{1)204}$$

$$\frac{744}{2)1488}$$

$$\frac{168}{6)1008}$$

$$\frac{331}{2)662}$$

$$\frac{328}{4)1312}$$

Homework Answers

1.1 Practice A

- **1.** 2531

- **2.** 4983 **3.** 6076 **4.** 4282

- **5**. 2364 **6**. 2192 **7**. 1575 **8**. 7584
- **9**. 84,710 **10**. 18 **11**. 7 **12**. 30

- **13.** $338\frac{5}{16}$ **14.** $43\frac{171}{181}$ **15.** $281\frac{8}{29}$

- subtraction
 multiplication
- 18. division
- **19.** Perimeter = 18 cm; Area = 18 cm^2
- 20. Perimeter = 30 yd; Area = 50 yd^2
- **21.** 320 × 17; Because 320 and 335 are close to each other, 17 of the numbers would be greater than 12 of them.
- 22. 9 guests per table. Some tables will have 10 guests.

Lesson 1.2

September 7, 8, & 9, 2016

Lesson 1.2

Lesson Objective:

Students will be able to:

use formal language to describe a power and look at the specific case of perfect squares.

Self-Evaluation Scale

Score	Description
4	I can teach other students how to use formal language to describe a power and look at the specific case of perfect squares.
3	I can use formal language to describe a power and look at the specific case of perfect squares.
2	I recognize, but still need help to use formal language to describe a power and look at the specific case of perfect squares.
1	I do not know how to use formal language to describe a power and look at the specific case of perfect squares.

Activity 1, 2, & 3

With a partner, work on Activity I, 2, & 3 on pages I0, II, & I2 of your Big Ideas Text Book.

A **power** is a product of repeated factors. The **base** of a power is the repeated factor. The **exponent** of a power indicates the number of times the base is used as a factor.

Power	Words
3 ²	Three squared, or three to the second
3 ³	Three <i>cubed</i> , or three to the third
3^4	Three to the fourth

1 Writing Expressions as Powers

Write each product as a power.

Because 4 is used as a factor 5 times, its exponent is 5.

So,
$$4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 = 4^5$$
.

b.
$$12 \times 12 \times 12$$

Because 12 is used as a factor 3 times, its exponent is 3.

So,
$$12 \times 12 \times 12 = 12^3$$
.

On Your Own

Write the product as a power.

1.
$$6 \cdot 6 \cdot 6 \cdot 6 \cdot 6 \cdot 6$$
 2. $15 \times 15 \times 15 \times 15$

2 Finding Values of Powers

Find the value of each power.

a.
$$7^2$$

b.
$$5^3$$

$$7^2 = 7 \cdot 7$$
 Write as repeated multiplication.

$$5^3 = 5 \cdot 5 \cdot 5$$

$$= 49$$

$$= 125$$

The square of a whole number is a **perfect square**.

3 Identifying Perfect Squares

Determine whether each number is a perfect square.

- a. 64
 - Because $8^2 = 64$, 64 is a perfect square.
- **b.** 20

No whole number squared equals 20. So, 20 is not a perfect square.

On Your Own

Find the value of the power.

3. 6^3

- **4.** 9² **5.** 3⁴ **6.** 18²

Determine whether the number is a perfect square.

7. 25

8. 2

9. 99

10. 100

Assignment

Complete problems 4, 5, I4, I5, 25, 26, 36, 37, & 38 on pages I4 & I5 in your Big Ideas Text Book.

Lesson 1.2

September 7, 8, & 9, 2016

Lesson Objective:

Students will be able to:

use formal language to describe a power and look at the specific case of perfect squares.

Self-Evaluation Scale

Score	Description
4	I can teach other students how to use formal language to describe a power and look at the specific case of perfect squares.
3	I can use formal language to describe a power and look at the specific case of perfect squares.
2	I recognize, but still need help to use formal language to describe a power and look at the specific case of perfect squares.
1	I do not know how to use formal language to describe a power and look at the specific case of perfect squares.

Homework

No Homework