## Warm Up

$$
\text { 1. } \frac{5}{6} \times \frac{1}{2}
$$

5. $\frac{7}{9} \times \frac{1}{2}$
6. $\frac{1}{2} \times \frac{1}{3}$
7. $\frac{4}{9} \times \frac{2}{3}$
8. $\frac{5}{11} \times \frac{1}{3}$
9. $\frac{1}{8} \times \frac{1}{4}$

## Warm Up Answers

1. $\frac{5}{6} \times \frac{1}{2}$
2. $\frac{7}{9} \times \frac{1}{2}$
$=\frac{7^{2}}{18}$
3. $\frac{1}{2} \times \frac{1}{3}$
$=\frac{1}{6}$
4. $\begin{aligned} & \frac{4}{9} \times \frac{2}{3} \\ = & \frac{8}{27}\end{aligned}$
5. $\frac{1}{8} \times \frac{1}{4}$
$=\frac{1}{32}$

Learning Objective: Students will be able to use a model and a formal rule to divide with mixed numbers.

## Homework Answers

### 2.2 Record and Practice Journal

$$
\begin{aligned}
& \text { Complete the statement. } \\
& \text { 1. } \frac{3}{8} \times \underline{\frac{8}{3}}=1 \\
& \text { 2. } 7 \times \underline{\frac{1}{7}}=1 \\
& \text { 3. } 3 \div \underline{\frac{1}{12}}=36 \\
& \text { 4. } \frac{4}{9} \div \underline{\frac{1}{27}}=12 \\
& \text { Evaluate the expression. } \\
& \text { 5. } \frac{1}{3} \div \frac{1}{6} \\
& \text { 6. } \frac{3}{8} \div \frac{5}{8} \\
& \text { 7. } 6 \div \frac{2}{5} \\
& 2 \\
& \frac{3}{5} \\
& 15 \\
& \text { 8. } \frac{4}{9} \div \frac{2}{3} \div \frac{5}{6} \\
& \text { 9. } \frac{1}{3}+\frac{4}{7} \div \frac{3}{10} \\
& \text { 10. } \frac{7}{8} \cdot \frac{4}{5} \div \frac{7}{20} \\
& \frac{4}{5} \\
& 2 \frac{5}{21} \\
& 2 \\
& \text { 11. In a jewelry store, rings make up } \frac{5}{9} \text { of the inventory. Earrings make up } \frac{4}{15} \\
& \text { of the inventory. How many times greater is the ring inventory than the } \\
& \text { earring inventory? } \\
& 2 \frac{1}{12}
\end{aligned}
$$

## Essential Question:

How can you model division by a mixed number?

## Lesson Objective:

Students will be able to:
use a model and a formal rule to divide with mixed numbers.

## Self-Evaluation Scale

| ScOre | I can teach other students how to use a model and a formal rule to <br> divide with mixed numbers. |
| :--- | :--- |
| 3 | I can use a model and a formal rule to divide with mixed numbers. <br> divide with mixed numbers. |
| 2 | I do not know how to use a model and a formal rule to divide with <br> mixed numbers. |
| 1 |  |

## Activity 1 \& 2

With a partner, work on Activity I \& 2 on pages 39 \& 40 of your Big Ideas Record and Practice Journal.

## 2 ACTIVITY: Dividing Mixed Numbers

Work with a partner. Write the division problem and solve it using a model.
a. How many three-fourths are in four and one-half?

b. How many five-sixths are in three and one-third?

c. How many three-eighths are in three and three-fourths?

d. How many one and one-halves are in six?
e. How many one and one-fifths are in five?
f. How many one and one-fourths are in four and one-half?
g. How many two and one-thirds are in five and five-sixths?

Dividing Mixed Numbers
Write each mixed number as an improper fraction. Then divide as you would with proper fractions.

## (1) Dividing a Mixed Number by a Fraction

Find $2 \frac{1}{4} \div \frac{3}{8}$.

$$
\begin{aligned}
2 \frac{1}{4} \div \frac{3}{8} & =\frac{9}{4} \div \frac{3}{8} & & \text { Write } 2 \frac{1}{4} \text { as the improper fraction } \frac{9}{4} . \\
& =\frac{9}{4} \times \frac{8}{3} & & \text { Multiply by the reciprocal of } \frac{3}{8} \text {, which is } \frac{8}{3} . \\
& =\frac{3 \times 8^{2}}{4 \times \not \times} & & \text { Multiply fractions. Divide out common factors. } \\
& =6 & & \text { Simplify. }
\end{aligned}
$$



## 2 Dividing Mixed Numbers

Find $3 \frac{5}{6} \div 1 \frac{2}{3}$.

$$
\begin{aligned}
3 \frac{5}{6} \div 1 \frac{2}{3} & =\frac{23}{6} \div \frac{5}{3} \\
& =\frac{23}{6} \times \frac{3}{5}
\end{aligned}
$$

$$
=\frac{23 \times 3^{1}}{2^{1}}
$$

$$
=\frac{23}{10}, \text { or } 2 \frac{3}{10} \quad \text { Simplify. }
$$

$\therefore$ So, the quotient is $2 \frac{3}{10}$. Reasonable? $2 \frac{3}{10} \approx 2$

## On Your Own

Divide. Write the answer in simplest form.

1. $1 \frac{3}{7} \div \frac{2}{3}$
2. $2 \frac{1}{6} \div \frac{3}{4}$
3. $8 \frac{1}{4} \div 1 \frac{1}{2}$
4. $6 \frac{4}{5} \div 2 \frac{1}{8}$

## 3 Using Order of Operations

Evaluate $5 \frac{1}{4} \div 1 \frac{1}{8}-\frac{2}{3}$.
$5 \frac{1}{4} \div 1 \frac{1}{8}-\frac{2}{3}=\frac{21}{4} \div \frac{9}{8}-\frac{2}{3} \quad$ Write each mixed number as an improper fraction.
$=\frac{21}{4} \times \frac{8}{9}-\frac{2}{3} \quad$ Multiply by the reciprocal of $\frac{9}{8^{\prime}}$ which is $\frac{8}{9}$.
$=\frac{721 \times 8^{2}}{A \times \mathscr{G}_{3}}-\frac{2}{3}$
Multiply $\frac{21}{4}$ and $\frac{8}{9}$. Divide out common factors.
$=\frac{14}{3}-\frac{2}{3} \quad$ Simplify.
$=\frac{12}{3}$, or $4 \quad$ Subtract.

Learning Objective: Students will be able to use a model and a formal rule to divide with mixed numbers.

4 Real-Life Application
One serving of tortilla soup is $1 \frac{2}{3}$ cups. A restaurant cook makes 50 cups of soup. Is there enough to serve 35 people? Explain.

Divide 50 by $1 \frac{2}{3}$ to find the number of available servings.

$$
\begin{array}{rlrl}
50 \div 1 \frac{2}{3} & =\frac{50}{1} \div \frac{5}{3} & & \text { Rewrite each number as an improper fraction. } \\
& =\frac{50}{1} \cdot \frac{3}{5} & & \text { Multiply by the reciprocal of } \frac{5}{3}, \text { which is } \frac{3}{5} . \\
& =\frac{10}{1 \cdot 50}=3 \\
& =30 & & \text { Multiply fractions. Divide out common factors. } \\
& & & \text { Simplify. }
\end{array}
$$

$\therefore$ :- No. Because 30 is less than 35 , there is not enough soup to serve 35 people.

## On Your Own

## Evaluate the expression. Write the answer in simplest form.

5. $1 \frac{1}{2} \div \frac{1}{6}-\frac{7}{8}$
6. $3 \frac{1}{3} \div \frac{5}{6}+\frac{8}{9}$
7. $\frac{2}{5}+2 \frac{4}{5} \div 1 \frac{3}{4}$
8. $\frac{2}{3}-1 \frac{4}{7} \div 4 \frac{5}{7}$
9. In Example 4, can 30 cups of tortilla soup serve 15 people? Explain.

Learning Objective: Students will be able to use a model and a formal rule to divide with mixed numbers.

## Assignment

Complete problems:
5, IO, I5, 20, 23, 24, 26, 30, 34, \& 39
on pages $74 \& 75$ in your Big Ideas Text Book.

## Essential Question:

How can you model division by a mixed number?

## Lesson Objective:

Students will be able to:
use a model and a formal rule to divide with mixed numbers.

## Self-Evaluation Scale

| ScOre | I can teach other students how to use a model and a formal rule to <br> divide with mixed numbers. |
| :--- | :--- |
| 3 | I can use a model and a formal rule to divide with mixed numbers. <br> divide with mixed numbers. |
| 2 | I do not know how to use a model and a formal rule to divide with <br> mixed numbers. |
| 1 |  |

## Homework

10/26-NO HW, practice math facts, review multiplying fractions. Quiz next week Multiplying and dividing fractions

