Learning Objective: Students will be able to draw polygons in the coordinate plane and find the lengths of their sides.

Warm Up

$$
7 4 \longdiv { 5 4 7 6 }
$$

66)6270
78)6708
98)8624
$9 6 \longdiv { 2 1 1 2 }$
$4 3 \longdiv { 4 0 8 5 }$
$3 4 \longdiv { 1 8 7 0 }$
$4 2 \longdiv { 4 2 0 }$

Warm Up Answers

$7 4 \longdiv { 5 4 7 6 }$
$6 6 \longdiv { 6 2 7 0 }$
$78 \lcm{6708}$
$9 8 \longdiv { 8 6 2 4 }$
$9 6 \longdiv { 2 1 1 2 }$
$4 3 \longdiv { 4 0 8 5 }$
$3 4 \longdiv { 1 8 7 0 }$
$4 2 \longdiv { 1 0 }$

Essential Question:

How can you find the lengths of line segments in a coordinate plane?

Lesson Objective:

Students will be able to:

draw polygons in the coordinate plane and find the lengths of their sides.

Self-Evaluation Scale

Score	DescriptiOn
4	I can teach other students how to draw polygons in the coordinate plane and find the lengths of their sides.
3	I can draw polygons in the coordinate plane and find the lengths of their sides.
2	I recognize, but still need help to draw polygons in the coordinate plane and find the lengths of their sides.
1	I do not know how to draw polygons in the coordinate plane and find the lengths of their sides.

Learning Objective: Students will be able to draw polygons in the coordinate plane and find the lengths of their sides.

1 Drawing a Polygon in a Coordinate Plane

The vertices of a quadrilateral are $A(2,4), B(3,9), C(7,8)$, and $D(8,1)$. Draw the quadrilateral in a coordinate plane.

GO Key Idea

Finding Distances in the First Quadrant

You can find the length of a horizontal or vertical line segment in a coordinate plane by using the coordinates of the endpoints.

- When the x-coordinates are the same, the vertical distance between the points is the difference of the y-coordinates.
- When the y-coordinates are the same, the horizontal distance between the points is the difference of the
 x-coordinates.

Be sure to subtract the lesser coordinate from the greater coordinate.

2 Finding a Perimeter

The vertices of a rectangle are $F(1,6), G(7,6), H(7,2)$, and $J(1,2)$. Draw the rectangle in a coordinate plane and find its perimeter.
Draw the rectangle and use the vertices to find its dimensions.
D The length is the horizontal distance between $F(1,6)$ and $G(7,6)$, which is the difference of the x-coordinates.

$$
\text { length }=7-1=6 \text { units }
$$

The width is the vertical distance between $G(7,6)$ and $H(7,2)$, which is the difference of the y-coordinates.

width $=6-2=4$ units
\therefore So, the perimeter of the rectangle is $2(6)+2(4)=20$ units.

3. Real-Life Application

In a grid of the exhibits at a zoo, the vertices of the giraffe exhibit are $E(0,90), F(60,90), G(100,30)$, and $H(0,30)$. The coordinates are measured in feet. What is the area of the giraffe exhibit?
Plot and connect the vertices using a coordinate grid to form a trapezoid. Use the coordinates to find the lengths of the bases and the height.

$$
\begin{aligned}
& b_{1}=60-0=60 \\
& b_{2}=100-0=100 \\
& h=90-30=60
\end{aligned}
$$

Use the formula for the area of a trapezoid.

$$
\begin{aligned}
A & =\frac{1}{2}(60)(60+100) \\
& =\frac{1}{2}(60)(160)=4800
\end{aligned}
$$

\therefore The area of the giraffe exhibit is 4800 square feet.

Learning Objective: Students will be able to draw polygons in the coordinate plane and find the lengths of their sides.

OYO!

On Your Own

5. The vertices of a rectangle are $J(2,7), K(4,7), L(4,1.5)$, and $M(2,1.5)$. Find the perimeter and the area of the rectangle.

OYO! Answers

5.

15 units; 11 square units

Assignment

Complete problems:
6, 8, IO, I2, I4, I8, 20, 22, 24, \& 26
on pages I78-I79 in your Big Ideas Text Book.

Homework

In your Big Ideas Record and Practice Journal.

